LXXXI Московская олимпиада школьников по химии

Заключительный этап

Теоретический тур

16.02.2025 г.

10 класс

Из предложенных шести задач, нужно выбрать пять!

Указание:

- при расчетах значения атомных масс следует округлять до целых, кроме хлора ($A_r(Cl) = 35,5$)

- в решении задачи обязательно нужно привести необходимые расчёты и рассуждения, ответ без доказательств может быть оценен в 0 баллов

Задача 1. История одного сплава

Условие

Образец сплава массой 10,0 г, состоящий из атомов двух металлов, которые в соединениях обычно проявляют степени окисления +2 и +3 соответственно, разделили на две порции. Одну из них поместили в избыток раствора гидроксида натрия, при этом она частично растворилась, а из раствора выделилось 730 мл (при н.у.) газа. Не растворившуюся в щёлочи часть первой порции обработали концентрированной соляной кислотой. Она полностью растворилась с образованием 730 мл (при н.у.) газа. Вторую порцию сплава сразу обработали концентрированной соляной кислотой. Она полностью растворилась, а объём выделившегося газа составил 4,380 л (при н.у.).

- 1. Какие газы выделяются при растворении образцов сплава в гидроксиде натрия и соляной кислоте? Рассчитайте массу каждой из порций сплава, взятой для экспериментов. Ответ без расчёта или обоснования не оценивается.
- 2. Определите, какие металлы входят в состав сплава и рассчитайте их мольные доли в нём. Запишите уравнения трёх протекающих реакций. *Ответ без расчёта или обоснования не оценивается*.
- 3. Укажите тривиальное название вещества, получаемого при растворении этого сплава в шёлочи.

Рекомендации к решению

Единственный газ, который может выделяться при растворении сплава металлов в растворе гидроксида натрия и в растворе соляной кислоты, — это водород H_2 . Один из двух металлов, присутствующих в сплаве, образует амфотерные соединения, второй же растворяется лишь в кислотах. При этом обычно и в кислоте, и в щёлочи образуются соединения металла в одной и той же степени окисления. Упрощённо для себя можно представить, что металл реагирует с водой с образованием гидроксида $M(OH)_x$, который дальше взаимодействует с кислотой или щёлочью. Поэтому объём газа, выделяющегося при растворении первого металла в кислоте и щёлочи, будет одинаковым. Поскольку общий объём газа в первом случае (730 мл + 730 мл = 1460 мл) втрое меньше чем во втором (4380 мл), то сплав разделили на порции в массовом соотношении 1:3, то есть массы порций составили 2,5 г и 7,5 г. Пусть в состав сплава входят трёхвалентный металл X и двухвалентный металл Y. Запишем уравнения реакций, протекающих в ходе описанного второго эксперимента:

- $2X + 6HCl \rightarrow 2XCl_3 + 3H_2 \uparrow$
- $Y + 2HCl \rightarrow YCl_2 + H_2 \uparrow$

В ходе реакций, протекающих во время первого эксперимента, выделяется равное количество водорода для каждого из металлов. При растворении 1 моль трёхвалентного металла в кислоте или щёлочи выделяется 1,5 моль водорода, а при растворении 1 моль двухвалентного металла — 1 моль водорода. Поскольку количества водорода равны, то количества трёхвалентного и двухвалентного металлов в сплаве относятся как 2:3. Таким образом, n(X) = 2x моль, n(Y) = 3x моль, тогда количество выделяющегося водорода в ходе каждой реакции равно 3x моль. Общее количество выделяющегося водорода равно 6x моль. Напомним, что масса образца, растворившегося в ходе первого эксперимента, равна 2,5 г, а общий объём выделившегося водорода составил 1,46 л (при н.у.).

$$n(H_2) = \frac{V(H_2)}{V_m} = \frac{1,46 \text{ л}}{22,4 \frac{\pi}{\text{модь}}} = 0,0652 \text{ моль};$$

$$x = \frac{n(H_2)}{6} = \frac{0,0652 \text{ моль}}{6} = 0,0109 \text{ моль}.$$

Тогда общее количество металлов \mathbf{X} и \mathbf{Y} в образце массой 2,5 г составит 0,0545 моль, а средняя молярная масса сплава окажется равна 45,87 г/моль.

Среди возможных вариантов металлов, обладающих степенью окисления +2 или +3 и растворимых в кислоте и щёлочи, можно выделить бериллий Ве, алюминий Аl, скандий Sc, цинк Zn и галлий Ga. Напомним, что средняя молярная масса сплава может быть вычислена по формуле:

$$0.4 \cdot M(X) + 0.6 \cdot M(Y)$$
.

Если Y = Be, то $M(X) = 101,16 \frac{\Gamma}{\text{моль}}$. Такой молярной массой обладает рутений Ru, но он не растворим в соляной кислоте.

Если X = Al, то $M(Y) = 58,46 \frac{\Gamma}{\text{моль}}$. Такой молярной массой обладает никель Ni, который может растворяться в соляной кислоте.

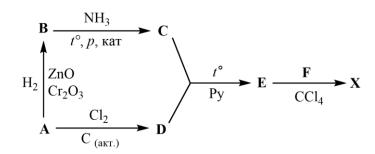
Если X = Sc, то $M(Y) = 46,48 \frac{\Gamma}{\text{моль}}$. Металла с такой молярной массой не существует.

Если Y = Zn, то $M(X) = 16,61 \frac{\Gamma}{\text{моль}}$. Металла с такой молярной массой не существует.

Если X = Ga, то $M(Y) = 29,97 \frac{\Gamma}{MOJE}$. Металла с такой молярной массой не существует.

Таким образом, единственный возможный вариант, соответствующий условию задачи, — это сплав, состоящий из 40 мольных % алюминия и 60 мольных % никеля.

Уравнения описанных реакций:


- 1) $2Al + 2NaOH + 6H₂O \rightarrow 2Na[Al(OH)₄] + 3H₂\uparrow$
- 2) $2A1 + 6HC1 \rightarrow 2A1C1_3 + 3H_2\uparrow$
- 3) Ni + 2HCl \rightarrow NiCl₂ + H₂ \uparrow

При растворении сплава никеля и алюминия в щёлочи образуется мелкодисперсный никель, носящий тривиальное название никель Ренея (Ni_{Ra}) и использующийся в качестве катализатора для гидрирования.

Критерии оценивания				
1. Определение формул газов, выделяющихся при	по 1 баллу			
растворении сплава в гидроксиде натрия и соляной кислоте				
Расчёт масс порций сплава, взятых для экспериментов	по 2 балла			
2. Определение металлов, входящих в состав сплава	по 4 балла			
Расчёт мольных долей металлов в составе сплава	по 2 балла			
3. Тривиальное название продукта растворения сплава в	2 балла			
щёлочи				
Итого	20 баллов			

Задача 2. Будьте осторожны!

Однажды на химическом предприятии, производившем вещество \mathbf{X} , произошла крупная авария, в результате которой в атмосферу были выброшены десятки тонн его предшественника — ядовитого соединения \mathbf{E} . Общая схема синтеза вещества \mathbf{X} из токсичного бинарного газа \mathbf{A} приведена на схеме:

При комнатной температуре и атмосферном давлении вещества ${\bf C}$ и ${\bf D}$ являются ядовитыми газами, а ${\bf B}$ и ${\bf E}$ представляют собой легкокипящие токсичные жидкости ($t_{\rm кип}$ < 65°C). Бинарный газ ${\bf A}$ в больших количествах образуется при переработке природного газа, а молекула вещества ${\bf E}$ содержит 7 атомов и обладает массой 4,733·10⁻²² кар. Молекула соединения ${\bf F}$ состоит из атомов трёх элементов, содержит одну гидроксильную группу, связанную с ароматической системой. Массовая доля кислорода в нём составляет 11,11%. В названии этого вещества можно встретить первую букву греческого алфавита. Для справки: ${\bf M}({\bf C})=60,055$ кар/моль.

1. Установите формулы веществ **A-F**, **X**. Ответ обоснуйте или подтвердите расчётом. *Ответ без расчёта или обоснования не оценивается*.

Рекомендации к решению

Традиционный способ переработки природного газа представляет собой паровую конверсию метана с образованием монооксида углерода и водорода. При действии паров воды на катализаторе монооксид углерода может быть превращён в безопасный углекислый газ. Таким образом, токсичное бинарное газообразное вещество $\bf A$, образующееся в больших количествах в ходе переработки природного газа, представляет собой угарный газ $\bf A$ – $\bf CO$. При его взаимодействии с хлором на активированном угле образуется ядовитый газ фосген $\bf D$ – $\bf COCl_2$, а реакция $\bf CO$ с водородом на оксидных катализаторах приводит к образованию метанола $\bf B$ – $\bf CH_3OH$. При взаимодействии метанола $\bf c$ аммиаком в присутствии катализатора образуется смесь различных аминов: метиламина $\bf CH_3NH_2$, диметиламина ($\bf CH_3$) $\bf 2NH$ и триметиламина ($\bf CH_3$) $\bf 3N$, – один из которых является веществом $\bf C$.

При взаимодействии \mathbf{C} с фосгеном образуется вещество \mathbf{E} , молекула которого состоит из семи атомов и обладает массой $4,733\cdot10^{-22}$ кар. Учитывая справочные данные, можно сделать вывод, что 1 кар = 0,2 г. Вычислим молярную массу соединения \mathbf{E} :

$$m(\mathbf{E}) = 4,733 \cdot 10^{-22} \text{ кар} = 9,466 \cdot 10^{-23} \text{г};$$
 $M(\mathbf{E}) = m(\mathbf{E}) \cdot N_a = 9,466 \cdot 10^{-23} \text{г} \cdot 6,022 \cdot 10^{23} \text{моль}^{-1} = 57,0 \, \text{Г/}_{\text{МОЛЬ}}.$

Молярная масса вещества ${\bf E}$ является нечётной, поэтому его молекула содержит нечётное число атомов водорода и не содержит атомов хлора. Молекула вещества ${\bf E}$ достаточно

лёгкая, поэтому, вероятно, в ней находится лишь одна метильная группа, тогда на остаток приходится 42 г/моль, соответствующие фрагменту -N=C=O. Данный порядок атомов обусловлен тем, что метильная группа должна быть связана с атомом азота. Тогда исходное вещество представляет собой метиламин $C - CH_3NH_2$, а продуктом его фосгенирования является метилизоцианат $E - CH_3NCO$.

Логично предположить, что в состав вещества \mathbf{F} входят атомы углерода, водорода и кислорода. В пересчёте на один атом кислорода молярная масса вещества составляет 144 г/моль, тогда на остаток приходится 128 г/моль. Такой молярной массой обладает ароматический фрагмент $C_{10}H_8$ – нафталин. В таком случае вещество \mathbf{F} представляет собой гидроксильное производное нафталина, также известное как нафтол. Поскольку в его названии встречается греческая буква α , то это 1-гидроксинафталин – α -нафтол. При взаимодействии α -нафтола и метилизоцианата образуется α -нафтиловый эфир N-метилкарбаминовой кислоты (\mathbf{X}), известный под коммерческим названием **севин** и использующийся в качестве инсектицида.

Структурные формулы соединений **F** и **X**:

Критерии оценивания		
1. Структурные формулы веществ A-D	по 2 балла	
Структурная формула веществ Е-F, Х	4 балла	
Если ответ не обоснован и не подтверждён расчётом, оценка 0 баллов.		
Итого	20 баллов	

Задача 3. Реакции бывают разные...

Условие

Скорость мономолекулярных реакций, описываемых общей схемой $A \to P$, может зависеть от концентрации реагента A достаточно причудливым образом. Для объяснения наблюдаемого явления в подобных реакциях был предложен трёхстадийный механизм подобного превращения, включающий стадию образования активированной частицы A^* :

$$A + A \xrightarrow{k_1} A + A^*;$$
 $A + A^* \xrightarrow{k_2} A + A;$ $A^* \xrightarrow{k_3} P.$

- 1. Используя предложенный механизм реакции и представленные допущения, получите выражение для концентрации активной частицы \mathbf{A}^* в произвольный момент времени и выведите общую зависимость скорости образования вещества \mathbf{P} от концентрации вещества \mathbf{A} . <u>Учтите, что полученные вами выражения могут содержать лишь концентрацию реагента C(A) и константы скорости каждой из трёх стадий k_1 - k_3 .</u>
- 2. Какой степени концентрации вещества **A** будет пропорциональна скорость образования вещества **P** при высоких и при низких концентрациях **A**? Для ответа на этот вопрос преобразуйте выражение для скорости к виду $r = k' \cdot C(A)^x$, где x искомая степень, а k' некоторая константа. Ответ обоснуйте.

При решении задачи используйте следующие допущения:

- Скорость каждой элементарной стадии равна произведению соответствующей константы скорости на концентрации реагентов в степенях стехиометрических коэффициентов;
- Скорость образования активированной частицы ${\bf A}^*$ равна скорости её расходования.

Рекомендации к решению

Выразим скорость каждой элементарной стадии через константу скорости соответствующей стадии и концентрации реагентов:

$$r_1 = k_1 \cdot C(A)^2;$$
 $r_2 = k_2 \cdot C(A) \cdot C(A^*);$ $r_3 = k_3 \cdot C(A^*).$

Активная частица ${\bf A}^*$ образуется в результате первой реакции и расходуется на второй и третьей стадиях. По условию задачи скорость образования активной частицы ${\bf A}^*$ равна скорости её расходования, поэтому $r_1 = r_2 + r_3$, откуда:

$$\begin{aligned} k_1 \cdot C(A)^2 &= k_2 \cdot C(A) \cdot C(A^*) + k_3 \cdot C(A^*); \\ C(A^*) &= \frac{k_1 \cdot C(A)^2}{k_2 \cdot C(A) + k_3}. \end{aligned}$$

Поскольку вещество \mathbf{P} образуется лишь в третьей реакции, то скорость его образования равна скорости третьей реакции:

$$r = r_3 = k_3 \cdot C(A^*) = \frac{k_1 k_3 \cdot C(A)^2}{k_2 \cdot C(A) + k_3}.$$

При **высоких** концентрациях вещества **A** слагаемое $k_2 \cdot \mathcal{C}(A)$ в знаменателе окажется значительно больше, чем k_3 , поэтому последним можно будет пренебречь:

$$r_{max} \approx \frac{k_1 k_3 \cdot C(A)^2}{k_2 \cdot C(A)} = \frac{k_1 k_3}{k_2} C(A).$$

Таким образом, при **высоких** концентрациях вещества \mathbf{A} скорость образования продукта реакции \mathbf{P} будет пропорциональна **первой** степени концентрации вещества.

При **низких** концентрациях вещества **A** слагаемое $k_2 \cdot C(A)$ в знаменателе окажется значительно меньше, чем k_3 , поэтому первым можно будет пренебречь:

$$r_{min} \approx \frac{k_1 k_3 \cdot C(A)^2}{k_3} = k_1 \cdot C(A)^2.$$

Таким образом, при **низких** концентрациях вещества **A** скорость образования продукта реакции **P** будет пропорциональна **второй** степени концентрации вещества.

Критерии оценивания			
1. Запись выражения для скорости каждой из элементарных стадий	по 2 балла		
Выражение для концентрации активной частицы \mathbf{A}^*	3 балла		
Выражение для скорости образования продукта реакции	3 балла		
2. Запись приближённых выражений для скорости реакции в	по 3 балла		
каждом из предельных случаев			
Корректное определение параметра x в каждом выражении	по 1 баллу		
Итого	20 баллов		

Задача 4. Настоящая палитра красок

Воздействие раствора едкого натра на белые кристаллы бинарного вещества \mathbf{A} приводит к образованию жёлтого осадка \mathbf{B} (реакция 1), практически не растворяющегося в концентрированных щелочах. При его окислении бромом в среде едкого кали образуется жёлтое вещество \mathbf{C} (реакция 2). При добавлении к нему цинка и соляной кислоты цвет раствора меняется следующим образом: оранжевый (из-за присутствия вещества \mathbf{D} , реакция 3), коричневый, зелёный (из-за присутствия вещества \mathbf{E} , реакция 4), циановый (суап) и синий (из-за присутствия продуктов растворения вещества \mathbf{A} , реакция 5).

- 1. Установите состав соединений А-Е. Ответ без обоснования не оценивается.
- 2. Напишите уравнения реакций 1-5.

Рекомендации к решению

Задача не содержит численных данных, поэтому в ходе решения приходится опираться окраску соединений. Подобное разнообразие проявляемых свидетельствует в пользу соединений переходного металла, образующего жёлтый гидроксид, а также растворы солей жёлтого, оранжевого, зелёного и синего цветов. Коричневая и циановая окраска растворов обусловлена попарным наложением оранжевого и зелёного и синего и зелёного цветов соответственно. Столь разнообразная окраска соединений характерна лишь для двух переходных металлов – ванадия и хрома. Однако растворы солей ванадия в низких степенях окисления окрашены в фиолетовый (V^{2+}) или зелёный цвет (V^{3+}) , вдобавок в сильнощелочной среде в растворах ванадия(V)присутствуют в основном бесцветные орто-ванадат VO_4^{3-} и мета-ванадат ионы VO_3^{-} . Окраска соединения хрома подходит под условие задачи существенно лучше: жёлтый цвет характерен для хроматов CrO_4^{2-} , оранжевый – для дихроматов $Cr_2O_7^{2-}$, зелёный – для раствора хлорида хрома(III) и обусловлен наличием катиона $[CrCl_2(H_2O)_4]^+$, а синий – для растворимых солей хрома(II). Поскольку вещество A образуется при восстановлении в соляной кислоте, то оно точно содержит хлорид-ионы, а следовательно, является хлоридом xрома(II) $A - CrCl_2$. При его обработке раствором едкого натра образуется жёлтый осадок гидроксида двухвалентного хрома ${\bf B} - {\rm Cr}({\rm OH})_2$. При его окислении бромом в растворе едкого кали образуется хромат калия $\mathbf{C} - \mathbf{K}_2\mathbf{CrO}_4$. При добавлении к нему цинка и соляной кислоты протекает быстрая кислотно-основная реакция, в которой образуется дихромат калия $\mathbf{D} - K_2 Cr_2 O_7$. Далее он постепенно восстанавливается цинком до хлорида хрома(III) $E - CrCl_3$ и хлорида хрома(II) $A - CrCl_2$.

Уравнения реакций 1-5:

- 1. $CrCl_2 + 2NaOH \rightarrow Cr(OH)_2 \downarrow + 2NaCl$
- 2. $Cr(OH)_2 + 2Br_2 + 6KOH \rightarrow K_2CrO_4 + 4KBr + 4H_2O$
- 3. $2K_2CrO_4 + 2HCl \rightarrow K_2Cr_2O_7 + 2KCl + H_2O$
- 4. $K_2Cr_2O_7 + 3Zn + 14HCl \rightarrow 2CrCl_3 + 3ZnCl_2 + 2KCl + 7H_2O$
- 5. $2CrCl_3 + Zn \rightarrow 2CrCl_2 + ZnCl_2$

Критерии оценивания						
1.	Установление	формул	соединений	A-E ,	подтверждённое	по 2 балла
логическим обоснованием						

2. Написание уравнений реакций 1-5 с верными коэффициентами	по 2 балла
Если коэффициенты расставлены неверно, оценка снижается	
до 1 балла. Если продукты или реагенты неверные, реакция не	
оценивается	
Итого	20 баллов

Задача 5. Пластмассовый мир победил!

Условие

Современную жизнь человека практически невозможно представить без полимеров, однако далеко не все из них можно получить в ходе полимеризации соответствующих мономеров.

Например, для получения полимера **A**, содержащего 54,55% углерода по массе, используется реакция щелочного гидролиза широко распространённого в быту вещества **B**. Оно, в свою очередь, является продуктом полимеризации мономера **C**, образующегося при окислительном присоединении уксусной кислоты к этилену.

- 1. Установите структурные формулы веществ **A-C**. Для полимеров укажите структуру мономерного звена. Приведите уравнение реакции образования **C** из исходных веществ в присутствии кислорода. *Ответ без расчёта или обоснования не оценивается*.
- 2. Где в быту используется вещество \mathbf{B} ? Приведите одно наиболее распространённое применение.

С похожей целью в быту используется и другое вещество \mathbf{D} , которое также невозможно получить при полимеризации соответствующего мономера. Основной способ его синтеза заключается в водной обработке вещества \mathbf{E} , образующегося при взаимодействии простого вещества \mathbf{F} с хлористым метилом в присутствии хлорида меди(\mathbf{I}). Элемент, образующий простое вещество \mathbf{F} , является одним из основных компонентов алюмосиликатных руд. Дополнительно известно, что вещество \mathbf{E} содержит 18,60% углерода и 54,94% хлора по массе.

- 3. Установите структурные формулы веществ **D-E**. Для полимеров укажите структуру мономерного звена. Определите молекулярную формулу простого вещества **F**. Ответ без расчёта или обоснования не оценивается.
- 4. Какое свойство простого вещества ${\bf F}$ определяет его применение в микроэлектронике?
- 5. Приведите тривиальное название группы полимеров, к которой относится **D**.

Рекомендации к решению

При гипотетическом присоединении уксусной кислоты к этилену возможно образование этилацетата. В то же время, при добавлении окислителя в систему возможно превращение этильного фрагмента в винильный. Тогда вещество \mathbf{C} , вероятно, представляет собой виниловый эфир уксусной кислоты $H_2C=CH-OOC-CH_3$, известный как виниалцетат. В ходе его полимеризации образуется поливинилацетат $\mathbf{B}-(-H_2C-CH(OOC-CH_3)-)_n$, являющийся основным компонентом клея ΠBA . Его щелочной гидролиз позволяет получить поливиниловый спирт $\mathbf{A}-(-CH_2-CH(OH)-)_n$. Массовая доля углерода в нём соответствует значению, приведённому в условии задачи.

Реакция образования вещества С:

$$2H_2C=CH_2 + 2CH_3COOH + O_2 \rightarrow 2H_2C=CH-OOC-CH_3 + 2H_2O$$

Простое вещество \mathbf{F} , использующееся в микроэлектронике и состоящее из атомов элемента, который является основным компонентом алюмосиликатных руд, — это кремний $\mathbf{F} - \mathrm{Si}$. Основными продуктами его взаимодействия с хлористым метилом в присутствии CuCl

являются диметилдихлорсилан $Si(CH_3)_2Cl_2$ и триметилхлорсилан $Si(CH_3)_3Cl$. Приведённым в условии задачи массовым долям углерода и хлора соответствует первый вариант, тогда $\mathbf{E} - Si(CH_3)_2Cl_2$. При его водной обработке образуется полидиметилсилоксан $\mathbf{D} - (-Si(CH_3)_2-Cl_2)$. Полимеры, относящиеся к группе полидиалкилсилоксанов, также называют силиконами. Кремний используется в микроэлектронике благодаря <u>полупроводниковым</u> свойствам.

Критерии оценивания				
1.	Определение структурных формул веществ А-С	по 2 балла		
	Уравнение реакции образования С из исходных веществ	2 балла		
2.	Указание на применение вещества В	2 балла		
3.	Определение структурных формул веществ D-E	по 2 балла		
	Определение формулы вещества F	2 балла		
4.	Область применения вещества F	2 балла		
5.	Тривиальное название группы полимеров	2 балла		
	Итого	20 баллов		

Задача 6. Нейтрально или не нейтрально...

Условие

Традиционно считается, что нейтральной среде в водном растворе соответствует значение показателя кислотности $pH_{\rm H}=7,00$. Однако на самом деле pH нейтральной среды сильно зависит от температуры – при 0°C он составляет $pH_0=7,48$, а при 100°C $pH_{100}=5,95$.

- 1. Сформулируйте более корректное определение нейтральной среды в водном растворе при произвольной температуре.
- 2. Определите стандартную энтальпию и стандартную энтропию диссоциации воды в предположении, что они не зависят от температуры.
- 3. При какой температуре рН нейтральной среды будет соответствовать 5,00? Каким образом можно нагреть жидкую воду до данной температуры?
- 4. Оцените наименьшее возможное значение pH_{min} нейтральной среды в жидкой воде, если координаты критической точки воды составляют T_{κ} = 647 К и P_{κ} = 22,06 МПа.

Справочные данные

$$\begin{split} \Delta_{\rm r} G_{\rm диcc}^{\circ} &= -RT \ln K_{\rm w}, \\ \Delta_{\rm r} G_{\rm диcc}^{\circ} &= \Delta_{\rm r} H_{\rm дucc}^{\circ} - T \cdot \Delta_{\rm r} S_{\rm дucc}^{\circ} \,, \\ K_{\rm w} &= [H^+][OH^-], \end{split}$$

где K_w — ионное произведение воды при данной температуре, T — температура, R = 8,314 $^{\mbox{\sc M}}/_{\mbox{\sc K}$. Моль, $\Delta_r G_{\mbox{\sc ducc}}^{\circ}$ — стандартная энергия Гиббса диссоциации воды, $\Delta_r H_{\mbox{\sc ducc}}^{\circ}$ — стандартная энтропия диссоциации воды.

Рекомендации к решению

Константа равновесия эндотермической реакции диссоциации воды существенным образом зависит от температуры, поэтому и связанная с ней величина — показатель кислотности рН для нейтральной среды — также не является постоянным. Более корректным определением нейтральной среды, учитывающим эту зависимость, является условие равенства равновесной концентрации катионов водорода $[H^+]$ и гидроксид-анионов $[OH^-]$.

Таким образом, в нейтральной среде $K_w = [H^+][OH^-] = [H^+]^2 = 10^{-2 \cdot pH_H}$. Для нахождения стандартных энтальпии и энтропии диссоциации воды составим систему из двух уравнений при двух различных температурах – 273К (0°C) и 373К (100°C):

$$\begin{split} \Delta_r H_{\text{дисс}}^{\circ} - T \cdot \Delta_r S_{\text{дисс}}^{\circ} &= \Delta_r G_{\text{дисс}}^{\circ} = -RT \ln K_w = 2RT \cdot pH \cdot \ln 10, \\ \left\{ \Delta_r H_{\text{дисс}}^{\circ} - 273 \text{K} \cdot \Delta_r S_{\text{дисс}}^{\circ} &= 2 \cdot 8,314 \frac{\text{Дж}}{\text{K} \cdot \text{моль}} \cdot 273 \text{K} \cdot 7,48 \cdot \ln 10, \\ \Delta_r H_{\text{дисс}}^{\circ} - 373 \text{K} \cdot \Delta_r S_{\text{дисс}}^{\circ} &= 2 \cdot 8,314 \frac{\text{Дж}}{\text{K} \cdot \text{моль}} \cdot 373 \text{K} \cdot 5,95 \cdot \ln 10, \\ \left\{ \Delta_r H_{\text{дисc}}^{\circ} &= 59651 \frac{\text{Дж}}{\text{моль}}, \\ \Delta_r S_{\text{дисc}}^{\circ} &= -67,89 \frac{\text{Дж}}{\text{K} \cdot \text{моль}}. \end{split} \right.$$

Согласно условию задачи, при определённой температуре T, $pH_{_H}$ для воды должен оказаться равным 5,00. Рассчитаем это значение, используя полученные значения $\Delta_r H_{\text{дисс}}^{\circ}$ и $\Delta_r S_{\text{дисc}}^{\circ}$:

$$T = \frac{\Delta_{\rm r} H_{\rm дисc}^{\circ}}{\Delta_{\rm r} S_{\rm диcc}^{\circ} + 2R \cdot pH \cdot \ln 10} = \frac{59651 \frac{\rm Дж}{\rm моль}}{-67,89 \frac{\rm Дж}{\rm K \cdot моль} + 2 \cdot 8,314 \frac{\rm Дж}{\rm K \cdot моль} \cdot 5,00 \cdot \ln 10} = 483 \ \rm K.$$

Жидкая вода может быть нагрета до температуры в 210°C при повышенном давлении, например, в автоклаве.

Минимально возможный pH_{min} нейтральной среды в жидкой воде будет достигнут при приближении температуры к критической – 647 К:

$$pH_{min} = \frac{\Delta_{\rm r} H_{\rm дисc}^{\circ} - T_{\rm K} \cdot \Delta_{\rm r} S_{\rm дисc}^{\circ}}{2 R T_{\rm K} \cdot \ln 10} = \frac{59651 \frac{\text{Дж}}{\text{МОЛЬ}} - 647 \text{ K} \cdot (-67,89 \frac{\text{Дж}}{\text{K} \cdot \text{МОЛЬ}})}{2 \cdot 8,314 \frac{\text{Дж}}{\text{K} \cdot \text{МОЛЬ}} \cdot 647 \text{ K} \cdot \ln 10} = 4,18.$$

Крите	Критерии оценивания			
1.	Формулировка критерия для нейтральной среды в водном	4 балла		
	растворе			
2.	Расчёт стандартных энтальпии и энтропии диссоциации жидкой	по 4 балла		
	воды			
3.	Расчёт температуры, при которой р $H_{\rm H} = 5{,}00$	3 балла		
	Указание на способ создания жидкой воды с такой	1 балл		
	температурой			
4.	Расчёт минимального значения рH _{min} в нейтральной среде	4 балла		
	Итого	20 баллов		