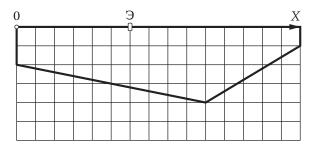


85-я Московская олимпиада школьников по физике 2024 год 7 класс

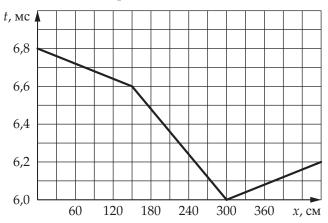
1. На «стадионе» (8 баллов)

Три маленьких тела изначально покоятся в трёх равноудаленных точках, принадлежащих окружности длиной 3 метра (см. рисунок).

В некоторый момент они одновременно начинают движение в одном направлении по окружности с постоянными скоростями: $v_1=4.0~{\rm M/c}, v_2=3.6~{\rm M/c}, v_3=3.0~{\rm M/c}$ (индекс в обозначении скорости соответствует номеру тела на рисунке). При этом тела не сталкиваются, проходя мимо друг друга. Колонной называется наименьшая дуга окружности, содержащая три тела. Например, в начальном положении длина колонны равна 2 метра. Найдите минимальную длину колонны в процессе движения тел.


2. Хороший, плохой (6 баллов)

Города A и B соединены дорогой, которая состоит из двух участков: «хорошего» (с недавно сделанным ремонтом, где машины едут быстро) и «плохого» (со старым разбитым асфальтом, по которому машины едут медленно). В некоторый момент времени из города A в город B выезжает машина, затем машины продолжают выезжать каждые 30 секунд. По «хорошему» участку дороги все машины едут с одинаковой большой скоростью, а по «плохому» — с одинаковой маленькой скоростью. Если подсчитать среднее арифметическое скоростей всех автомобилей на дороге в некоторый момент, когда первая машина уже прибыла в город B, а последняя ещё не выехала из города A, то получится величина u = 70 км/ч. Если же подсчитать среднее арифметическое скоростей только тех автомобилей на дороге, которые уже проехали половину расстояния между городами, то получится величина $u_2 = 60$ км/ч. Найдите скорость автомобилей на «хорошем» участке дороги, если известно, что его длина превышает длину «плохого» участка.


3. Эхолот на льдине (8 баллов)

На рисунке, представленном ниже, показан профиль участка покоящейся льдины (вид сбоку). Длина стороны клетки соответствует 30 см. На плоской горизонтальной поверхности льдины с помощью

специального эхолота проводят измерения, располагая эхолот в точках с разными координатами по оси OX (см рисунок).

Эхолот испускает звуковые сигналы вертикально вниз, а через некоторое время регистрирует отражённый от дна сигнал. Можно считать, что после отражения от дна сигнал распространяется вертикально вверх. На графике, представленном на втором рисунке, показана зависимость t(x), где t — время, прошедшее с момента испускания звукового импульса эхолотом до момента приёма отражённого от дна сигнала, а x — координата эхолота.

Постройте график зависимости расстояния от верхней поверхности льдины до дна от координаты x. Считайте, что средние скорости распространения звука в льдине и в воде равны 3000 м/c и 1500 м/c соответственно.

4. Плотность Луны (6 баллов)

Согласно закону всемирного тяготения материальная точка и однородный шар притягиваются друг к другу с силой $F = G\frac{m_1 \cdot m_2}{r^2}$, где G — фундаментальная константа под названием гравитационная постоянная, m_1 , m_2 — массы материальной точки и шара соответственно, r — расстояние между материальной точкой и центром шара. Чему равна средняя плотность Луны, если средняя плотность Земли равна $5.5 \, \text{г/см}^3$? Радиус Земли равен $6400 \, \text{км}$, радиус Луны $1740 \, \text{км}$. Ускорение свободного падения на Земле равно $9.8 \, \text{H/kr}$, а на Луне равно $1.6 \, \text{H/kr}$.