Заключительный этап Инженерно-конструкторский профиль Междисциплинарные задачи

9 класс Решение

Задача 1

Вариант 1

- 1) По закону Ома для замкнутой цепи $I=\varepsilon/R=(10+12)/100=0,22$ А.
- 2) За одну секунд вал совершает 3000/60 = 50 об/с. Тогда угловую скорость можно найти по формуле $\omega = 2\pi\nu = 2*3,14*50 = 314$ рад/с.
- 3) Передаточное число определяется отношением числа зубьев ведомого вала к ведущему. $i=\frac{z_2}{z_1}=\frac{60}{30}=2$
- 4) Крутящий момент ведомой шестерни можно вычислить по формуле:

$$M_{
m Bедомая} = M_{
m Bедущая} * rac{l_{
m Bедомая}}{l_{
m Bедущая}} = 1,5 * rac{60}{30} = 3 \ {
m H-m}.$$

5) Имеется две пары шестерен и для каждой необходимо определить передаточное отношение. Чтобы найти частоту вращения промежуточной шестерни будем необходимо частоту вращения ведущей шестерни умножить на отношение ведущий шестерни к ведомой. $v_{\Pi} = v_{\rm B} * \frac{z_{\rm B}}{z_{\rm \Pi}} = 900 * \frac{12}{36} = 300$ об/мин. Далее найдем частоту вращения ведомой шестерни по аналогии. $v_{\rm Bедомая} = v_{\rm H} * \frac{z_{\rm H}}{z_{\rm Bed}} = 300 * \frac{36}{60} = 180$ об/мин

Вариант 2

- 1) По закону Ома для замкнутой цепи $I=\varepsilon/R = (12+24)/100 = 0.36 \text{ A}.$
- 2) За одну секунд вал совершает 1800/60 = 30 об/с. Тогда угловую скорость можно найти по формуле $\omega = 2\pi\nu = 2*3,14*30 = 188,4$ рад/с.
- 3) Передаточное число определяется отношением числа зубьев ведомого вала к ведущему. $i=\frac{z_2}{z_1}=\frac{50}{20}=2,5$
- 4) Крутящий момент ведомой шестерни можно вычислить по формуле:

$$M_{
m Bедомая} = M_{
m Bедущая} * rac{l_{
m Bедомая}}{l_{
m Bедущая}} = 1,5 * rac{50}{20} = 3,75 \
m H-м.$$

5) Имеется две пары шестерен и для каждой необходимо определить передаточное отношение. Чтобы найти частоту вращения промежуточной шестерни будем необходимо частоту вращения

Заключительный этап Инженерно-конструкторский профиль Междисциплинарные задачи

ведущей шестерни умножить на отношение ведущий шестерни к ведомой. $v_{\Pi}=v_{\rm B}*\frac{z_{\rm B}}{z_{\Pi}}=800*\frac{15}{30}=400$ об/мин. Далее найдем частоту вращения ведомой шестерни по аналогии. $v_{\rm Begomag}=v_{\Pi}*\frac{z_{\Pi}}{z_{\rm Beg}}=400*\frac{30}{60}=200$ об/мин

|--|

Задача 2

Вариант 1

- 1) Скорость вращения определяется по формуле $\omega=2\pi\nu$. Переведем частоту вращения в систему СИ. $\nu=\frac{600}{60}\left[\frac{1}{c}\right]$. Тогда $\omega=2\pi\nu=2*3,14*\frac{600}{60}=62,8\ [\mathrm{pag/c}]$
- 2) Найдем линейную скорость из формулы $V = \omega R$. Диаметр колеса в системе СИ 0,1 м, тогда радиус колеса R = 0,05 м. Зная скорость и радиус найдем линейную скорость.

$$V = \omega R = 62.8 * 0.05 = 3.14 \text{ [m/c]}$$

3) Найти пройденное расстояние можно линейную скорость робота на время. Так как робот движется прямолинейно, то линейная скорость правого и левого колеса равны и совпадает с линейной скоростью робота. Поэтому

За 10 секунд робот проехал
$$S = V*t = 3,14*10 = 31,4$$
 [м] За 20 секунд робот проехал $S = V*t = 3,14*20 = 62,4$ [м]

4) Так как колеса дифференциального робота вращаются с разной скоростью, то можно сделать вывод, что робот осуществляет поворот и линейная скорость робота находится по формуле $V = \frac{V_r + V_l}{2}$. Линейную скорость колес находим по аналогии с предыдущими пунктами.

$$V_r = \omega_r R = 2\pi\nu R = 2*3,14*\frac{540}{60}*0,05 = 2,826 \text{ [M/c]}$$

$$V_l = \omega_l R = 2\pi\nu R = 2*3,14*\frac{360}{60}*0,05 = 1,884 \text{ [M/c]}$$

$$V = \frac{V_r + V_l}{2} = \frac{2,826 + 1,884}{2} = 2,355 \text{ [M/c]} \quad S = V*t = 2,355*20 = 47,1 \text{[M]}$$

Заключительный этап Инженерно-конструкторский профиль Междисциплинарные задачи

Вариант 2

1) Скорость вращения определяется по формуле $\omega = 2\pi \nu$. Переведем частоту вращения в систему СИ. $\nu = \frac{300}{60} \left[\frac{1}{c}\right]$. Тогда

$$\omega = 2\pi\nu = 2 * 3.14 * \frac{600}{60} = 31.4 \text{ [рад/c]}$$

2) Найдем линейную скорость из формулы $V = \omega R$. Диаметр колеса в системе СИ 0,1 м, тогда радиус колеса R = 0,05 м. Зная скорость и радиус найдем линейную скорость.

$$V = \omega R = 31.4 * 0.05 = 1.57 \text{ [M/c]}$$

3) Найти пройденное расстояние можно линейную скорость робота на время. Так как робот движется прямолинейно, то линейная скорость правого и левого колеса равны и совпадает с линейной скоростью робота. Поэтому

За 10 секунд робот проехал
$$S = V*t = 1,57*20 = 31,4$$
 [м] За 20 секунд робот проехал $S = V*t = 1,57*30 = 47,1$ [м]

4) Так как колеса дифференциального робота вращаются с разной скоростью, то можно сделать вывод, что робот осуществляет поворот и линейная скорость робота находится по формуле $V = \frac{V_r + V_l}{2}$. Линейную скорость колес находим по аналогии с предыдущими пунктами.

$$V_r = \omega_r R = 2\pi \nu R = 2 * 3,14 * \frac{480}{60} * 0,05 = 2,512 \text{ [M/c]}$$
 $V_l = \omega_l R = 2\pi \nu R = 2 * 3,14 * \frac{420}{60} * 0,05 = 2,198 \text{ [M/c]}$
 $V = \frac{V_r + V_l}{2} = \frac{2,826 + 1,884}{2} = 2,355 \text{ [M/c]} S = V * t = 2,355 * 30 = 70,65 \text{[M]}$

1 пункт	7 баллов
2 пункт	7 баллов
3 пункт	8 баллов
4 пункт	8 баллов

Задача 3

Вариант 1

1) длина проекции прохода на высоту - 1 м, высота - 20 м, проходов 20

Заключительный этап Инженерно-конструкторский профиль Междисциплинарные задачи

```
2)232,36=1+2+3+4+5+6+7+8+9+10+11+12+13+14+15+16+17+18+19+20+
    10*5^0,5
    округлить: 232
    3) 2 поворота за каждый проход кроме последнего. На последнем
    проходе 1 поворот,
    736 = 20*2-1+3*232,36, таким образом 736 = 12 минут, 16 секунд.
    4)
Программа.
Функция:
алг Triangle
  проходы = 17
  в направлении = против часовой стрелки
  пока проходы >= 0:
    ΗЦ
    пока расстояние до стены > 0, делать:
      ΗЦ
      ехать прямо
      КЦ
    повернуть на (180 - уголАВС) градусов внаправлении
    расстояние1 = проходы / синус(угол ABC)
    пока расстояние до стены > расстояние1, делать:
      ΗЦ
      ехать прямо
      КЦ
    повернуть на уголАВС градусов внаправлении
```

Москва 2020/2021 уч. г.

Заключительный этап Инженерно-конструкторский профиль Междисциплинарные задачи

поменять в направлении на противоположное проходы = проходы - 1 КЦ кон НАЧАЛО угол ABC = арктангенс(2) * $180 / \Pi U()$ треугольники = 0 пока треугольники < 360 // угол ABC: треугольники = треугольники + 1 Triangle повернуть на угол АВС градусов по часовой стрелке пока расстояние до стены > 0, делать: ΗЦ ехать прямо КЦ повернуть на угол АВС градусов против часовой стрелки КОНЕЦ Расчет угла между сторонами ZZ-B и ZZ-A последнего и исходного треугольников. Угол равен ABC = $atan(2)=63.4^{\circ}$ 360 // (180 - 2 * ABC) = 6(6+1) * (180 - 2 * ABC) - 360 = 11,9

Заключительный этап Инженерно-конструкторский профиль Междисциплинарные задачи

Ответ (вариант 1): 1-20 проходов. 2-232 метра. 3-12 минут, 16 секунд. 4- программа, угол = 11,9°.

```
Вариант 2
```

```
1) длина проекции прохода на высоту - 1 м, высота - 18 м, проходов 18
    2) 191,1=1+2+3+4+5+6+7+8+9+10+11+12+13+14+15+16+17+18+9*5^0,5
    округлить: 191
    3) 2 поворота по 2 секунды на каждом проходе, 5 секунд за метр:
    1027,6 = 18*4+5*191
    отбросить дробную часть: 1027
    4) программа:
Функция:
алг Triangle
  проходы = 17
  в направлении = против часовой стрелки
```

пока проходы >= 0:

ΗЦ

пока расстояние до стены > 0, делать:

ΗЦ

ехать прямо

КЦ

повернуть на (180 - уголАВС) градусов внаправлении

расстояние1 = проходы / синус(угол ABC)

пока расстояние до стены > расстояние1, делать:

ΗЦ

Заключительный этап Инженерно-конструкторский профиль Междисциплинарные задачи

ехать прямо КЦ повернуть на уголАВС градусов внаправлении поменять в направлении на противоположное проходы = проходы - 1 КЦ кон НАЧАЛО угол ABC = арктангенс(2) * $180 / \Pi \text{И}()$ треугольники = 0 пока треугольники < 360 // угол ABC: треугольники = треугольники + 1 Triangle повернуть на угол АВС градусов по часовой стрелке пока расстояние до стены > 0, делать: ΗЦ ехать прямо КЦ повернуть на угол АВС градусов против часовой стрелки КОНЕЦ Расчет угла между сторонами ZZ-B и ZZ-A последнего и исходного

Москва 2020/2021 уч. г.

треугольников. Угол равен $360 - 6 * (180 - 2 * ABC) = 41,2^{\circ}$.

Заключительный этап Инженерно-конструкторский профиль Междисциплинарные задачи

Ответ (вариант 2): 1-18 проходов. 2-191 метр. 3-17 минут, 7 секунд. 4- программа, угол = $41,2^{\circ}$.

Критерии оценки

No	Что выполнено	Балл 0-50
1	Ход решения правильный, но не получены численные результаты (или не совпадают с правильным ответом)	5
2	Правильно определено количество проходов	10
3	Правильно определено количество метров	10
4	Правильно определено время проходов	10
5	Правильно составлена программа п.4	10
6	Правильно рассчитано количество треугольников и угол в п. 4	5
	Итого:	50