Отборочный тур на московскую олимпиаду школьников для 7 классов 2020

Сайт: Дистанционная подготовка

Курс: Отборочные туры на Московскую олимпиаду по информатике 6-9 классов Условия задач: Отборочный тур на московскую олимпиаду школьников для 7 классов 2020

Printed by: Роман Екимов

Date: Вторник 2 Июнь 2020, 17:32

Список задач

- Задача А. Переключение окон
- Задача В. Представление чисел
- **Задача С.** Клад
- Задача D. Коллекционирование этикеток
- Задача Е. Строки Фибоначчи
- **Задача F.** Кола

Переключение окон

Дима — программист, поэтому на его компьютере всегда открыто много окон. Так как у Димы не очень большой монитор, на нём может отображаться только одно окно. В каждый момент времени оконный менеджер хранит список открытых окон, первое окно списка отображается на мониторе. Для переключения окон Дима использует сочетание клавиш Alt + Tab. Если удерживать эту кнопку нажатой в течение Alt + Tab секунд, то Alt + Tab окон в текущей нумерации переместится на первую позицию, а относительный порядок остальных окон не изменится. Например, на рисунке ниже показано, что произойдёт с порядком окон, если нажимать на Alt + Tab в течение Alt + Tab в A

Если держать Alt + Tab N - 1 секунду, то первым станет последнее окно из списка. Список открытых окон «зациклен», за последним окном следует первое окно из списка, т. е. если удерживать Alt + Tab нажатым N секунд, то окно, которое было первым в списке, останется на первом месте. Если удерживать Alt + Tab N + 1 секунду, на первое место переместится второе по счёту окно и т.д.

В начале рабочего дня любимая среда разработки Димы имела номер М в списке открытых окон. В течение дня Дима К раз использовал сочетание клавиш Alt + Tab. Определите, на какой позиции находится его любимая среда разработки в конце дня.

Входные данные

Первая строка входных данных содержит целое число N, $1 \le N \le 10^{-5}$ – количество окон на экране. Вторая строка содержит целое число M, $1 \le M \le N$ – номер, который имела любимая среда разработки Димы в начале дня. Третья строка содержит целое число K, $1 \le K \le 10^{-5}$ – количество раз, которое Дима нажимал Alt + Tab. В последующих K строках содержатся целые положительные числа, не превосходящие 10^{-5} – длительность каждого нажатия в секундах.

Выходные данные

Программа должна вывести одно целое число – позицию любимой среды Димы в конце рабочего дня.

Система оценки

Решение, правильно работающее только для случаев, когда $1 \le N \le 3$, $1 \le K \le 3$ и все продолжительности нажатий не превосходят N-1, будет оцениваться в 30 баллов.

Решение, правильно работающее только для случаев, когда $1 \le N \le 100$ и $1 \le K \le 100$, будет оцениваться в 60 баллов.

Выходные данные

3

Представление чисел

Дано натуральное число N. Требуется представить его в виде суммы двух натуральных чисел A и B таких, что НОД (наибольший общий делитель) чисел A и B — максимален.

Ограничение по времени выполнения программы - 1 секунда, ограничение по используемой памяти - 64 мегабайта.

Входные данные

Во входном файле записано натуральное число N ($2 \le N \le 10^9$)

Выходные данные

В выходной файл выведите два искомых числа A и B. Если решений несколько, выведите любое из них.

Примеры

Входные данные

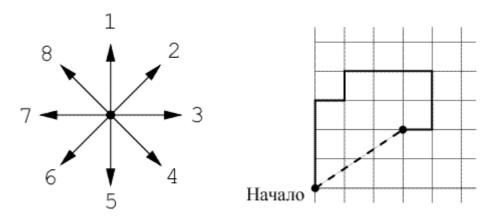
15

Выходные данные

5 10

Входные данные

16


Выходные данные

8 8

Клад

Найти закопанный пиратами клад просто: всё, что для этого нужно — это карта. Как известно, пираты обычно рисуют карты от руки и описывают алгоритм нахождения клада так: «Встаньте около одинокой пальмы. Пройдите тридцать шагов в сторону леса, потом семнадцать шагов в сторону озера, ..., наконец десять шагов в сторону большого булыжника. Клад находится под ним». Большая часть таких указаний просто сводится к прохождению какого-то количества шагов в одном из восьми направлений (1 - север, 2 - северо-восток, 3 - восток, 4 - юго-восток, 5 - юг, 6 - юго-запад, 7 - запад, 8 - северо-запад) (см. рис). Длина шага в любом направлении равна 1.

Путешествие по такому пути обычно является прекрасным способом посмотреть окрестности, однако в наше время постоянной спешки ни у кого нет времени на это. Поэтому кладоискатели хотят идти напрямую в точку, где зарыт клад. Например, вместо того, чтобы проходить три шага на север, один шаг на восток, один шаг на север, три шага на восток, два шага на юг и один шаг на запад, можно пройти напрямую, использовав около 3.6 шага (см. рис).

Вам необходимо написать программу, которая по указаниям пиратов определяет точку, где зарыт клад.

Входные данные

Первая строка входного файла содержит число N – число указаний ($1 \le N \le 40$). Последующие N строк содержат сами указания – номер направления (целое число от 1 до 8) и количество шагов (целое число от 1 до 1000). Числа разделены пробелами.

Выходные данные

В выходной файл выведите координаты X и Y точки (два вещественных числа, разделённые пробелом), где зарыт клад, считая, что ось Ox направлена на восток, а ось Oy – на север. В начале кладоискатель должен стоять в начале координат. Координаты необходимо вывести с погрешностью не более 10^{-3} .

Примеры Входные данные

- 6
- 1 3
- 3 1 1 1
- 3 3

Выходные данные

3.000 2.000

Входные данные

1 8 10

Выходные данные

-7.071 7.071

Коллекционирование этикеток

Вася коллекционирует спичечные этикетки. Для этого у него есть N альбомов вместимостью $K_1, K_2, ..., K_N$ этикеток. Вася хочет, чтобы в случае утери одного любого альбома каждая этикетка осталась у него хотя бы в одном экземпляре. Для этого он покупает каждую этикетку в двух экземплярах, и наклеивает их в два разных альбома. Какое максимальное количество различных этикеток при этом может оказаться в его коллекции?<

Входные данные

Входной файл содержит сначала число N — количество альбомов, а затем N чисел $K_1, K_2, ..., K_N$, задающих вместимости альбомов. N — натуральное число из диапазона от 2 до 1000. Вместимость каждого альбома задается натуральным числом, суммарная вместимость всех альбомов не превышает 100000 этикеток.

Выходные данные

В выходной файл выведите сначала число Е — максимальное количество различных этикеток, которое может собрать Вася с соблюдением выдвинутого условия. Затем выведите Е пар чисел — каждая пара чисел задает номера двух альбомов, куда будет вклеена очередная этикетка.

Примеры Входные данные

4 1 2 1 1

Выходные данные

Строки Фибоначчи

Строку Фибоначчи F(K) для натуральных чисел K определим так: F(1) = 'A', F(2) = 'B', F(K) = F(K-1) + F(K-2) при K > 2, где "+" означает конкатенацию строк. Требуется найти количество вхождений строки S, состоящей из символов A и B, в строку Фибоначчи F(N).

Ограничения: длина S от 1 до 25, 1 <= N <= 45.

Примечание. Длина F(45) равна 1 134 903 170.

Входные данные

В первой строке содержится число N, во второй - строка S.

Выходные данные

Выводится одно число - количество вхождений строки S в строку Фибоначчи F(N).

Примеры

Входные данные

A

Выходные данные

1

Входные данные

Т

Выходные данные

0

Входные данные

1

BBABBABABBABBABBABBAB

Выходные данные

0

Кола

Завод по производству колы изготавливает ее не только для магазинов, но и для всемирно известной сети ресторанов быстрого питания.

Ежедневно завод отгружает один и тот же объем колы в литрах. Служба доставки сети ресторанов обычно использует для транспортировки колы емкости объемом или только 50 литров, или только 70 литров. Если доставка осуществляется с помощью емкостей в 50 литров, то для перевозки имеющегося объема колы необходимо A емкостей. А если с помощью емкостей в 70 литров, то необходимо B емкостей. При этом в каждом из случаев одна из емкостей может быть заполнена не полностью.

Недавно сеть ресторанов решила утвердить новый объем емкостей для доставки колы — 60 литров. Сколько емкостей теперь может понадобиться для доставки того же самого объема колы?

Входные данные

Входные данные содержат 2 числа A и B, расположенных каждое в отдельной строке ($1 \le A$, $B \le 10\,000\,000$).

Выходные данные

Выведите все возможные значения для количества емкостей по 60 литров, которые окажутся заполненными (в том числе одна возможно частично), в порядке возрастания или число -1, если значения A и B противоречат друг другу, то есть они были записаны неверно.

Примеры тестов

Входные данные

3

Выходные данные

2 3

Входные данные

1

Выходные данные

-1

Примечание

В первом примере колы могло быть, например, 115 литров, в этом случае понадобится две емкости в 60 литров, а могло быть — 135 литров, в этом случае понадобятся уже три емкости по 60 литров. Четыре емкости не могут понадобиться никогда.

Online-группа тестов оценивается в 60 баллов, в этой группе $1 \le A$, $B \le 1\,000$.

Offline-группа тестов оценивается в 40 баллов.