
LXXV МОСКОВСКАЯ ОЛИМПИАДА ШКОЛЬНИКОВ ПО ХИМИИ ЗАКЛЮЧИТЕЛЬНЫЙ ЭТАП ТЕОРЕТИЧЕСКИЙ ТУР 24.02.2019 г. 9 класс

В зачёт идут только <u>пять</u> задач из шести. Задача с минимальным числом баллов при подсчёте суммы баллов не учитывается.

Задача №1

Определите формулы веществ A, B, $X_1 - X_4$, $Y_1 - Y_4$, напишите уравнения соответствующих реакций:

Дополнительно известно:

- X_1 и Y_1 простые вещества.
- A бинарное соединение азота и натрия.
- 3) **В** жидкость при температуре 25°С и давлении 745 мм рт.ст.
- 4) Отношение масс X_1 и Y_1 , образующихся из A, составляет 1:1,826.
- 5) Массовая доля более легкого элемента в **Y**2 равна 16,87%.

Решение:

1) Определим состав вещества **A**. Рассмотрим вариант, когда массы натрия и азота относятся как 1:1,826. Пусть m(Na)=1 г, тогда масса азота равна 1,826 г. Количества веществ натрия и азота равны:

$$n(Na)=m(Na): M(Na)=1$$
 г : 23 г/моль ≈ 0.0435 моль $n(N)=m(N): M(N)=1,826$ г : 14 г/моль ≈ 0.1304 моль

Отношение количеств веществ натрия и азота равно $0.0435:0.1304\approx 1:3$, что соответствует азиду натрия NaN_3 (вещество **A**), который так же подходит по условию, так как разлагается при нагревании на простые вещества. Аналогично можно проверить случай, когда натрия по массе больше, чем азота. В этом случае не получается вывести формулу реально существующего бинарного соединение натрия и азота.

2) Определим состав вещества \mathbf{Y}_2 . Так как вещества \mathbf{X}_1 и \mathbf{Y}_1 – азот и натрий (пока ещё не ясно, как зашифровано каждое из веществ, это ещё предстоит определить), то \mathbf{Y}_2 – другое бинарное соединение азота и натрия, причем более легкий элемент – это азот, и нам дана его массовая доля. Пусть масса \mathbf{Y}_2 равна 100 г, тогда:

$$m(N) = \omega(N) \cdot m(Y_2) = 0.1687 \cdot 100 \ \Gamma = 16.87 \ \Gamma$$

 $m(Na) = m(Y_2) - m(N) = 100 \ \Gamma - 16.87 \ \Gamma = 83.13 \ \Gamma$

Количества веществ азота и натрия:

$$n(Na)=m(Na):M(Na)=83,13\ {\ \ \Gamma}:23\ {\ \ \ }$$
г/моль $pprox 3,614$ моль $n(N)=m(N):M(N)=16,87\ {\ \ \ }$ г : 14 г/моль $pprox 1,205$ моль

Отношение количеств веществ натрия и азота равно $3{,}614:1{,}205\approx 3:1$, что соответствует нитриду натрия Na_3N (вещество Y_2).

3) Определение остальных веществ. При взаимодействии Na_3N с соляной кислотой образуются хлорид натрия и хлорид аммония. Из них только хлорид аммония может реагировать с щелочью, поэтому \mathbf{Y}_3 — хлорид аммония NH_4Cl . При взаимодействии хлорида аммония с гидроксидом натрия образуется аммиак, хлорид натрия и вода. С учетом того, что следующая реакция протекает при нагревании в присутствии оксида хрома (III), можно сделать вывод, что последняя реакция — это сжигание аммиака в кислороде в присутствии катализатора оксида хрома (III). Таким образом \mathbf{Y}_4 — аммиак NH_3 , \mathbf{X}_4 — кислород O_2 . Жидкое при указанных условиях вещество \mathbf{B} — вода, которая образуется при сжигании аммиака в кислороде.

С учетом того, что кислород образуется из вещества X_3 в присутствии оксида марганца (IV), можно предположить, что X_3 — пероксид водорода. Тогда X_2 — пероксид натрия, из которого при взаимодействии с соляной кислотой образуется хлорид натрия и пероксид водорода. Пероксид натрия образуется при взаимодействии кислорода (X_4) с натрием, следовательно, X_1 — натрий, тогда Y_1 — азот.

Критерии оценивания:

1) Расчеты для определения формул веществ:

Расчет состава (или проверка расчетом) вещества A-1 балл Расчет состава (или проверка расчетом) вещества Y_2-1 балл

2) Определение веществ:

$$A - NaN_3$$
; $B - H_2O$

$$X_1 - Na$$
; $X_2 - Na_2O_2$; $X_3 - H_2O_2$; $X_4 - O_2$

$$Y_1 - N_2$$
; $Y_2 - Na_3N$; $Y_3 - NH_4Cl$; $Y_4 - NH_3$

За каждое правильно определенное вещество – 1 балл (всего 10 баллов)

3) Уравнения реакций:

Первая реакция:

$$2NaN_3 \rightarrow 2Na + 3N_2$$

Реакции с веществами $X_1 - X_4$ *:*

$$2Na + O_2 \rightarrow Na_2O_2$$

$$Na_2O_2 + 2HCl \rightarrow 2NaCl + H_2O_2$$

$$2H_2O_2 \rightarrow 2H_2O + O_2$$

Реакции с веществами $Y_1 - Y_4$:

$$6Na + N_2 \rightarrow 2Na_3N$$

 $Na_3N + 4HCl \rightarrow 3NaCl + NH_4Cl$
 $NH_4Cl + NaOH \rightarrow NaCl + NH_3 + H_2O$

Последняя реакция:

$$4NH_3 + 5O_2 \rightarrow 4NO + 6H_2O$$

За каждую правильно написанную реакцию — 1 балл (всего 8 баллов), если реакция не уравнена, то её следует оценивать в 0,5 балла.

Залача №2

Соль **X** является распространённой пищевой добавкой. Ниже представлена схема получения соли **X** из соли **Y**:

$$Y \xrightarrow{SiO_2; C; t^{\circ}C} A \xrightarrow{O_2 \text{ (изб.)}} B \xrightarrow{H_2O} C \xrightarrow{Z \text{ (1 моль)}} E \xrightarrow{2F; t^{\circ}C} X$$

Одно из тривиальных названий \mathbf{Z} – каустическая сода. Массовая доля кислорода в \mathbf{Z} составляет 40%. Массовая доля кислорода в соединении \mathbf{B} равна 56,34%. Вещество \mathbf{Y} представляет собой среднюю соль кислоты \mathbf{C} и содержит 41,29% кислорода по массе.

- 1) Определите вещества **A-G**, **X**, **Y**, **Z**. Ответ подтвердите расчётами.
- 2) Напишите все необходимые уравнения реакций (8 уравнений).
- 3) Какие вещества с тривиальным названием «сода» Вам известны? Приведите их названия и соответствующие формулы.

Решение

1) Вещество \mathbf{C} – это кислота, тогда скорее всего вещество \mathbf{Z} – это основание. Для формулы \mathbf{Z} состава $\mathrm{Me}(\mathrm{OH})_n$ получаем:

$$0, 4 = \frac{16n}{M + 17n} \Rightarrow M = 23n$$

При n = 1, M = 23 г/моль, что соответствует натрию (Na)

Следовательно, \mathbf{Z} – NaOH.

Вещество **B** скорее всего представляет собой оксид, тогда для вещества **B** состава $\Im_2 O_n$ получаем:

$$0,5634 = \frac{16n}{2M(\Im) + 16n} \Rightarrow M(\Im) = 6,2n$$

При n = 5, M(3) = 31 г/моль, что соответствует фосфору (P).

Следовательно, ${\bf B}-{\rm P}_2{\rm O}_5$ (или ${\rm P}_4{\rm O}_{10}$). Тогда ${\bf C}-{\rm H}_3{\rm PO}_4$, а вещество ${\bf Y}-{\rm соль}$ ортофосфорной кислоты $-{\rm M}_3({\rm PO}_4)_{\rm n}$. Выведем формулу соли:

$$0,4129 = \frac{64n}{3M + 95n} \Longrightarrow M = 20n$$

При n = 2, M = 40 г/моль, что соответствует кальцию (Ca).

Следовательно, $Y - Ca_3(PO_4)_2$.

X	Y	Z	A	В
Na ₅ P ₃ O ₁₀	Ca ₃ (PO ₄) ₂	NaOH	Р или Р4	Р2О5 или Р4О10
C	D	E	F	G
H ₃ PO ₄	Na ₃ PO ₄	NaH ₂ PO ₄	Na ₂ HPO ₄	Na ₄ P ₂ O ₇

- 2) Уравнения реакций:
- 1) $2Ca_3(PO_4)_2 + 10C + 6SiO_2 \rightarrow 6CaSiO_3 + 10CO + P_4$

или

$$Ca_3(PO_4)_2 + 5C + 3SiO_2 \rightarrow 3CaSiO_3 + 5CO + 2P$$

 $2) 4P + 5O_2 \rightarrow 2P_2O_5$

(засчитывать уравнения с Р₄ и Р₄О₁₀)

- 3) $P_2O_5 + 3H_2O \rightarrow 2H_3PO_4$ или $P_4O_{10} + 6H_2O \rightarrow 4H_3PO_4$
- 4) $H_3PO_4 + 3NaOH (изб.) \rightarrow Na_3PO_4 + 3H_2O$
- 5) $H_3PO_4 + NaOH \rightarrow NaH_2PO_4 + H_2O$

- 6) $H_3PO_4 + 2NaOH \rightarrow Na_2HPO_4 + 2H_2O$
- 7) $2Na_2HPO_4 \rightarrow Na_4P_2O_7 + H_2O$
- 8) $NaH_2PO_4 + 2Na_2HPO_4 \rightarrow Na_5P_3O_{10} + 2H_2O$
- 3) Формулы и названия «сод»:

Na₂CO₃ – кальцинированная сода

NaHCO₃ – питьевая сода

 $Na_{2}CO_{3}.10H_{2}O$ — кристаллическая сода

Критерии оценивания:

1) Формулы веществ **Y**, **Z**, **B** с расчётом по 1 баллу 3 балла

(без расчёта -0 баллов)

Формулы веществ X, A, C-G по 1 баллу

2) Уравнения реакций по 1 баллу

7 баллов 8 баллов

(если неверно указаны коэффициенты -0.5 балла)

3) Любые формулы двух «сод» по 0,5 балла

1 балл

Верные названия соответствующих «сод» по 0,5 балла

1 балл

Задача №3

Некоторые из веществ A - Λ являются простыми, а некоторые бинарными, причем в их состав могут входить только атомы двух элементов \mathfrak{I}_1 и \mathfrak{I}_2 , находящихся в одной подгруппе Периодической системы. Соотношение молярных масс этих веществ 2:16:3:4:5 (в порядке перечисления веществ, приведенном выше). Вещество Λ при взаимодействии с водой превращается в вещество Λ производство которого превышает несколько сот млн. тонн в год. Определите зашифрованные вещества и элементы, ответ обоснуйте.

Вычислите тепловой эффект реакции превращения вещества \mathbf{A} в \mathbf{B} , если известно следующее (коэффициенты во всех реакциях указаны):

$$8A + B \rightarrow 8\Gamma + 2376 кДж$$

 $B + 8B \rightarrow 8Д + 4304 кДж$
 $2\Gamma + A \rightarrow 2Д + 198 кДж$

Тепловой эффект реакции превращения Д в E составляет 418 кДж. Определите, хватит ли теплоты, выделяющейся при образовании 10 моль вещества E, чтобы расплавить кубик льда с ребром, равным 10 см. Приведите соответствующие расчеты. Плотность льда составляет 900 кг/м³, удельная теплота плавления льда равна $3.3 \cdot 10^5$ Дж/кг, начальная температура льда 0° С, давление 1 атм.

Решение:

1) Так как вещества, образованные элементами из одной подгруппы Π С, могут реагировать друг с другом, то, скорее всего, эти элементы являются неметаллами, что сильно сокращает поле для поиска. Из целочисленного соотношения молярных масс веществ, в состав которых входят атомы этих элементов, следует, что атомные массы элементов кратны какому-то числу. В первую очередь стоит предположить, с учетом стехиометрии приведенных ниже реакций, что элементы $\mathbf{9}_1$ и $\mathbf{9}_2$ – это кислород и сера (или наоборот). Тогда вещество \mathbf{A} – дикислород \mathbf{O}_2 , вещество \mathbf{F} – сера \mathbf{S}_8 , реакция между ними, это реакция образования сернистого ангидрида:

$$S_8 + 8O_2 \rightarrow 8SO_2$$

Таким образом, вещество Γ – SO_2 . Третья реакция, это реакция между сернистым ангидридом и дикислородом, в результате которой образуется серный ангидрид:

$$2SO_2 + O_2 \rightarrow 2SO_3$$

Следовательно, вещество $\mathbf{J}-\mathbf{SO}_3$. Серный ангидрид образуется непосредственно из серы при окислении более сильным окислителем, чем дикислород, с учетом этого соображения, стехиометрии второй реакции и соотношения молярных масс, делаем вывод, что \mathbf{B} — озон. Уравнение второй реакции запишется тогда так:

$$S_8 + 8O_3 \rightarrow 8SO_3$$

Вещество E, образующееся при взаимодействии серного ангидрида с водой, это серная кислота H_2SO_4 , что подходит под условие о том, что вещество E получают в промышленных масштабах. Соответствующая реакция:

$$SO_3 + H_2O \rightarrow H_2SO_4$$

2) Необходимо рассчитать тепловой эффект реакции превращения дикислорода (**A**) в озон (**B**): $3O_2 \rightarrow 2O_3$

Проще всего это сделать, используя закон Гесса. Так же можно сравнивать изменения энергии системы при протекании той или иной реакций. Рассчитаем тепловой эффект по закону Гесса. Для этого проанализируем реакции:

$$S_8 + 8O_2 \rightarrow 8SO_2 + 2376$$
 кДж
 $S_8 + 8O_3 \rightarrow 8SO_3 + 4304$ кДж
 $2SO_2 + O_2 \rightarrow 2SO_3 + 198$ кДж

Домножим вторую реакцию на «-1», а третью на «4», и сложим левые и правые части:

$$8O_2 + S_8 - S_8 - 8O_3 + 8SO_2 + 4O_2 \rightarrow 8SO_2 - 8SO_3 + 8SO_3 + 2376$$
 кДж $- 4304$ кДж $+ 4 \cdot 198$ кДж Или:

$$12O_2 \rightarrow 8O_3 - 1136$$
 кДж

После сокращения получим:

$$3O_2 \rightarrow 2O_3 - 284$$
 кДж

Тепловой эффект реакции образования озона из кислорода составляет -284 кДж, что соответствует тому факту, что озон образуется из кислорода воздуха при грозовом разряде.

3) При образовании 10 моль серной кислоты (Е) выделяется теплота:

$$Q = 418 \text{ кДж} \cdot 10 = 4180 \text{ кДж}$$

Проверим, хватит ли этой теплоты, чтобы расплавить кубик льда. Сначала найдем объём и массу льда:

$$\begin{split} V_{\text{лед}} &= 10 \text{ cm} \cdot 10 \text{ cm} \cdot 10 \text{ cm} = 1000 \text{ cm}^3 \\ m_{\text{лед}} &= \rho_{\text{лед}} \cdot \text{ V}_{\text{лед}} = 0.9 \text{ г/cm}^3 \cdot 1000 \text{ cm}^3 = 900 \text{ г} = 0.9 \text{ кг} \end{split}$$

Для плавления такой массы льда, взятого при температуре 0°C, потребуется количество теплоты:

$$Q_{\text{плав}} = \lambda_{\text{лел}} \cdot m_{\text{лел}} = 3.3 \cdot 10^5 \,\text{Дж/к} \cdot 0.9 \,\text{к} \cdot \Gamma = 297000 \,\text{Дж} = 297 \,\text{к} \cdot \text{Дж}$$

Видим, что количество теплоты, выделяющейся при образовании 10 моль серной кислоты, значительно превышает то количество теплоты, которое необходимо для плавления кубика льда со стороной равной 10 см, поэтому лед полностью расплавится и останется вода с температурой выше 0° C.

Критерии оценивания:

- 1) Соображение о том, что атомные массы элементов кратны какому-то числу 2 балла
- 2) Определение элементов 9_1 и 9_2 по 1 баллу (всего 2 балла)
- 3) Определение веществ A, E, E, E, E, E, E по 1 баллу (всего 6 баллов)
- 4) Определение теплового эффекта реакции образования озона из дикислорода 4 балла.
- 5) Определение объема и массы льда по 1 баллу (всего 2 балла).

6) Расчет теплоты, требующейся для плавления кубика льда и вывод о том, что теплоты реакции хватит для плавления льда — по **2 баллу** (всего **4 балла**).

Задача №4

Как известно, состояние газа определяется объёмом V, давлением р и температурой Т. Для идеального газа эти величины связаны уравнением Клапейрона-Менделеева:

$$\mathbf{pV} = \mathbf{vRT}$$
, где

 ${f R}$ — универсальная газовая постоянная, имеющая во внесистемных единицах, значение — 8,314 кПа×л/(К×моль), ${f T}$ — температура в Кельвинах, ${f T}$ = 273 + ${f t}^{o}{f C}$.

Большинство школьных экспериментов проводятся при комнатной температуре 21°C и давлении в 1 атм.

В школьной лаборатории решили получить углекислый газ. Для этого в аппарат Киппа поместили 110 г мраморных осколков (содержащих 10% инертных примесей), а затем начали добавлять соляную кислоту.

- 1) Запишите уравнение реакции растворения. Определите максимальный объём выделившегося газа.
- В лабораторию поступил баллон с газом **X**. Рабочие характеристики баллона: объём -50 литров, масса -51,5 кг, давление газа -150 атм. при комнатной температуре, масса с газом -63,936 кг.
- 2) Определите газ X. Ответ подтвердите расчётом. Для чего применяется газ X в лабораторном синтезе? Как получают газ X?

Смесь углекислого газа и газа \mathbf{Y} массой 17,2 г при 50° С и нормальном давлении занимает объём 13,25 л. При пропускании этой смеси через известковую воду выпадает 20 г осадка.

3) Напишите необходимое уравнение реакции. Рассчитайте молярную массу газа **Y**. Приведите формулы не менее трёх газов, которые удовлетворяют условию задачи.

Решение

1) Уравнение реакции растворения

$$CaCO_3 + 2HCl \rightarrow CaCl_2 + CO_2 + H_2O$$

2 балл

(если неправильно расставлены коэффициенты – 0,5 балла)

2)
$$m(чист. CaCO_3) = 110 \times 0,9 = 99 \ \Gamma$$
 1 балл $\nu(CaCO_3) = 99/100 = 0,99 \ моль$ 1 балл $V(CO_2) = 0,99 \times 22,4 = 22,176 \ л$ 1 балл ИЛИ

$$V(CO_2) = \frac{vRT}{p} = \frac{0.99 \times 8.314 \times 294}{101.325} = 23.9 \text{ л}$$

(в случае верного расчёта без учёта примеси – 1 балл)

3)
$$m(X) = 63,936 - 51,5 = 12,436 \text{ кг}$$
 1 балл $v(X) = \frac{pV}{RT} = \frac{150 \times 101,325 \times 50}{8,314 \times (273 + 21)} = 310,9 \text{ моль}$ 2 балла

$$M(X) = 12436/310,9 = 40$$
 г/моль 1 балл
Следовательно, газ X – аргон (Ar) 1 балл

4) Аргон применяется в синтезах, где необходима инертная или бескислородная атмосфера. 1 балл 1 балл 5) Аргон получают перегонкой воздуха Уравнения реакций: 6) $Ca(OH)_2 + CO_2 \rightarrow CaCO_3 + H_2O$ 2 балла $v(CaCO_3) = 20/100 = 0.2$ моль 0.5 балл v(газов. смеси) = $\frac{13,25 \times 101,325}{8,314 \times 323} = 0,5$ моль 2 балла $m(Y) = 17.2 - 0.2 \times 44 = 8.4 \text{ }\Gamma$ 0,5 балла v(Y) = 0.5 - 0.2 = 0.3 моль 0,5 балла M(Y) = 8,4/0,3 = 28 г/моль 1 балл

Задача №5

Подходят следующие газы: N_2 ; CO; C_2H_4 ; C_2D_2 ; B_2H_6

По 0,5 балла за формулу, засчитываются любые три

К неокрашенному раствору, содержащему 39,72 г вещества **К**, прилили раствор вещества **Л**, содержащий 20,52 г этого вещества. При этом наблюдалось выпадение белого осадка **М** массой 55,92 г. Известно, что раствор вещества **К** имеет слабокислую среду, в ходе реакции среда стала нейтральной. В состав веществ **К** и **Л** входят атомы одного химического элемента, что обуславливает их ядовитость. Если выпарить такую же порцию раствора вещества **Л**, и прокалить сухой остаток в токе газа **Н** при 550° C, то образуется вещество **О** массой 20,28 г, разлагающееся при нагревании выше 750° C (масса при этом уменьшается на 1,92 г). Про газ **Н** известно, что при охлаждении он конденсируется в жидкость голубоватого цвета, а при давлении выше 10^{5} атмосфер превращается в твердое красное вещество **П** с молярной массой 128 г/моль. Определите зашифрованные вещества, напишите уравнения всех описанных в тексте задачи реакций.

1.5 балла

Решение:

1) Если среда раствора вещества \mathbf{K} слабокислая, а после реакции среда раствора становится нейтральной, то вещество \mathbf{J} проявляет основные свойства, и в ходе реакции между ними образуется вода. Масса образующейся воды равна разнице между суммой масс реагирующих веществ (\mathbf{K} и \mathbf{J}) и массой осадка \mathbf{M} :

$$m(H_2O) = m(K) + m(J) - m(M) = 39,72 \Gamma + 20,52 \Gamma - 55,92 \Gamma = 4,32 \Gamma$$

Количество вещества образующейся воды равно:

$$n(H_2O) = m(H_2O) : M(H_2O) = 4,32 \ \Gamma : 18 \ \Gamma/\text{моль} = 0,24 \ \text{моль}$$

2) Определим вещество Л. Так как оно проявляет основные свойства, то предположим, что это основание, и тогда его состав можно выразить формулой Ме(ОН)_х. Найдем молярную массу металла, предположительно входящего в состав вещества. При этом учтем, что количество гидроксид-анионов в растворе вещества Л равняется количеству вещества образующейся воды, и количество вещества основания равно отношению количества вещества гидроксид-анионов и значения «х». Тогда можно сделать разумный перебор, заполнив таблицу:

Значение «х»	Основание	n(JI)	М(Л)	M(Me)	Металл
--------------	-----------	-------	------	-------	--------

1	МеОН	0,24 моль	85,5 г/моль	68,5 г/моль	_
2	Me(OH) ₂	0,12 моль	171 г/моль	137 г/моль	Ba
3	Me(OH) ₃	0,08 моль	256,5 г/моль	205,5 г/моль	_
4	Me(OH) ₄	0,06 моль	342 г/моль	274 г/моль	_

Таким образом, вещество Π — гидроксид бария (барий обуславливает ядовитость этого вещества) и его количество вещества равно 0,12 моль.

- 3) Определим вещества K и M. По условию известно, что K, так же как и J, содержит барий, следовательно, это, скорее всего, соль, причем соль кислая и растворимая. Условие о том, что среда раствора этой соли слабокислая, наводит на мысль о том, что это соль несильной кислоты. Всем этим условиям соответствует дигидроортофосфат бария $Ba(H_2PO_4)_2$. Тогда при взаимодействии этой соли с раствором гидроксида бария (J) может выпадать либо гидроортофосфат бария $Ba(PO_4)_2$. Проверим это расчетом. Учтем, что в ходе реакции вещества взяты в стехиометрическом соотношении, так как итоговый раствор имеет нейтральную среду.
- а) Рассмотрим реакцию образования гидроортофосфата бария:

$$Ba(H_2PO_4)_2 + Ba(OH)_2 \rightarrow 2BaHPO_4 \downarrow + 2H_2O$$

По уравнению реакции:

$$n(Ba(H_2PO_4)_2) = n(Ba(OH)_2) = 0,12$$
 моль $n(BaHPO_4) = 2 \cdot n(Ba(OH)_2) = 0,24$ моль

Массы этих солей равны:

$$\begin{split} m(Ba(H_2PO_4)_2) &= n(Ba(H_2PO_4)_2) \cdot M(Ba(H_2PO_4)_2) = 0,\!12 \text{ моль} \cdot 331 \text{ г/моль} = 39,\!72 \text{ г} \\ m(BaHPO_4) &= n(BaHPO_4) \cdot M(BaHPO_4) = 0,\!24 \text{ моль} \cdot 233 \text{ г/моль} = 55,\!92 \text{ г} \end{split}$$

Этот вариант подходит под условие задачи.

б) Проведем аналогичный расчет для реакции образования ортофосфата бария:

$$Ba(H_2PO_4)_2 + 2Ba(OH)_2 \rightarrow Ba_3(PO_4)_2 \downarrow + 4H_2O$$

По уравнению реакции:

$$n(Ba(H_2PO_4)_2) = 0.5 \cdot n(Ba(OH)_2) = 0.06$$
 моль $n(Ba_3(PO_4)_2) = 0.5 \cdot n(Ba(OH)_2) = 0.06$ моль

Массы этих солей равны:

$$\begin{split} m(Ba(H_2PO_4)_2) &= n(Ba(H_2PO_4)_2) \cdot M(Ba(H_2PO_4)_2) = 0,06 \text{ моль} \cdot 331 \text{ г/моль} = 19,86 \text{ г} \\ m(Ba_3(PO_4)_2) &= n(Ba_3(PO_4)_2) \cdot M(Ba_3(PO_4)_2) = 0,06 \text{ моль} \cdot 601 \text{ г/моль} = 36,06 \text{ г} \end{split}$$

Этот вариант не подходит под условие задачи.

Итак, веществом **К** является дигидроортофосфат бария $Ba(H_2PO_4)_2$, белым осадком **М** – гидроортофосфат бария $BaHPO_4$.

4) Определим вещества **H**, **O** и **П**. При выпаривании раствора гидроксида бария и дальнейшем прокаливании сухого основания в отсутствии какого-либо газа должен образовываться оксид бария BaO. При чем его количество вещества должно быть равно количеству вещества гидроксида бария, т.е. 0,12 моль, тогда его масса должна быть равна:

$$m(BaO) = n(BaO) \cdot M(BaO) = 0.12$$
 моль · 153 г/моль = 18,36 г

Это значение массы не совпадает с массой вещество **O**, образующегося при прокаливании гидроксида бария в токе газа **H**. Проанализируем разложение вещества **O**. В ходе него образуется остаток массой:

$$m_{\text{(остаток)}} = 20,28 \ \Gamma - 1,92 \ \Gamma = 18,36 \ \Gamma$$

Это наводит на мысль, что при разложении \mathbf{O} образуется оксид бария. Газ же \mathbf{H} способен обратимо реагировать с оксидом бария, образуя продукт, неустойчивый при высокой температуре. Такими газами могут быть кислород (тогда \mathbf{O} – это пероксид бария BaO_2), углекислый газ (в этом случае \mathbf{O} – карбонат бария BaCO_3) или сернистый газ (\mathbf{O} – сульфит бария BaSO_3). Проверим эти варианты расчетом. В случае пероксида бария от формулярной единицы BaO_2 отщепляется один атом кислорода, в случае карбоната и сульфита бария отщепляется одна молекула углекислого или сернистого газов, во всех случаях количества веществ «уходящих» атомов кислорода или молекул оксидов равно 0,12 моль. Рассчитаем молярную массу уходящего «фрагмента» вещества:

$$M_{\phi par} = 1.92 \ \Gamma : 0.12 \ моль = 16 \ \Gamma / моль$$

Следовательно, из формулярной единицы «уходит» при нагревании один атом кислорода, а вещество \mathbf{O} – пероксид бария $\mathrm{BaO_2}$, газ \mathbf{H} – кислород $\mathrm{O_2}$. Углекислый газ так же не подходит, т.к. при охлаждении при нормальном давлении конденсируется не в голубоватую жидкость, а в белое твердое вещество («сухой лёд»), сернистый газ конденсируется в бесцветную жидкость. Если \mathbf{H} – дикислород $\mathrm{O_2}$, то вещество $\mathbf{\Pi}$ – другая аллотропная модификация кислорода, устойчивая при указанных экстремальных давлениях. Формулу вещества $\mathbf{\Pi}$ можно представить как $\mathrm{O_y}$, тогда «у» равен:

$$y = M(O_y) : M(O) = 128 \ \Gamma/моль : 16 \ \Gamma/моль = 8$$

Тогда Π — аллотропная модификация кислорода с молекулярной формулой O_8 .

Критерии оценивания:

- 1) Определение количества вещества образующейся воды 1 балл.
- 2) Вывод о том, что металл, входящий в состав Π является барием **2 балла**.
- 3) Вывод, что вещество Π гидроксид бария -1 балл.
- 4) Вывод о том, что вещество K дигидроортофосфат бария, а вещество M гидроортофосфат бария по **2** балла (всего **4** балла).

Проверка расчетом этого предположения – 2 балла.

- 5) Вывод о том, что при разложении вещества $\mathbf{0}$ выше 750°C образуется оксид бария $\mathbf{2}$ балла (если нет обоснования расчетом $\mathbf{1}$ балл).
- 6)Вывод, что вещество O пероксид бария 2 балла (1 балл, если нет соответствующего расчета), что вещество H дикислород O_2 1 балл.
- 7)Bывод о том, что Π октакислород O_8 1 балл.
- 8) Уравнения реакций:

$$Ba(H_2PO_4)_2 + Ba(OH)_2 \rightarrow 2BaHPO_4 \downarrow + 2H_2O$$

 $2Ba(OH)_2 + O_2 \rightarrow 2BaO_2 + 2H_2O$
 $2BaO_2 \rightarrow 2BaO + O_2 \uparrow$
 $4O_2 \rightarrow O_8$

За каждую правильно написанную реакцию — 1 балл (всего 4 балла), если реакция не уравнена, то её следует оценивать в 0.5 балла.

Задача №6

Соединения, содержащие в своём составе элемент X имеют широкий спектр применений. В природе одним из самых распространённых соединений X является минерал A. Для выделения простого вещества C, образованного элементом X, минерал A подвергают обжигу (реакция I), при этом выделяется газ Y и образуется вещество B. Причём при сжигании 1,00 г A образуется

130,74 мл (н.у.) газа \mathbf{Y} . Вещество \mathbf{B} далее сплавляют с углём (реакция 2) с образованием вещества \mathbf{C} . Газ \mathbf{Y} обесцвечивает бромную воду (реакция 3), вызывает помутнение известковой воды (реакция 4), а при реакции с другим газом \mathbf{Z} , содержащим тот же элемент что и \mathbf{Y} , образует простое вещество жёлтого цвета (реакция 5). При сплавлении оксида \mathbf{B} с пероксидом натрия в атмосфере кислорода (реакция 6) образуется соль \mathbf{D} . Дополнительно известно, что соль \mathbf{D} – это соль одноосновной кислоты с массовой долей кислорода равной 17,14%. Эта соль обладает сильнейшей окислительной способностью, так при добавлении этой соли к раствору азотной кислоты с нитратом марганца (II) наблюдается появление малинового окрашивания раствора (реакция 7).

Определите вещества Y, Z, A-D. Ответ подтвердите расчётом. Напишите уравнения *реакций 1* -7. Как называется соль D?

<u>Решение</u>

1) Газ \mathbf{Y} обесцвечивает бромную воду и вызывает помутнение известковой воды, следовательно, газ $\mathbf{Y}-SO_2$, тогда газ $\mathbf{Z}-H_2S$, а простое вещество жёлтого цвета — это сера.

Тогда минерал A – это сульфид X_2S_n

Составим схему горения сульфида А:

 $\mathbf{X}_2\mathbf{S}_n \to nSO_2$

1,00 г 130,74 мл

$$\frac{n}{2X + 32n} = \frac{0,13074}{22,4} \Rightarrow X = 69,67n$$

При n = 3, X = 209 г/моль, что соответствует висмуту (Bi)

Тогда, $A - Bi_2S_3$, $B - Bi_2O_3$, C - Bi

Выведем соль \mathbf{D} .

Так как **D** получают сплавлением **B** с пероксидом натрия в атмосфере кислорода, следовательно, **D** – соль натрия. Тогда, формула **D** – **NaBiO**_n. Т.к. массовая доля кислорода в этой соли равна 17,14%, можно определить n:

$$0,1714 = \frac{16n}{232 + 16n} \Rightarrow n = 3$$

Следовательно, \mathbf{D} – NaBiO₃.

A	В	C	
Bi ₂ S ₃	Bi ₂ O ₃	Bi	
D	Y	Z	
NaBiO ₃	SO ₂	H ₂ S	

- 2) Уравнения реакций:
- 1) $2Bi_2S_3 + 9O_2 \rightarrow 2Bi_2O_3 + 6SO_2$
- 2) $Bi_2O_3 + 3C \rightarrow 2Bi + 3CO$
- 3) $SO_2 + Br_2 + 2H_2O \rightarrow H_2SO_4 + 2HBr$
- 4) $SO_2 + Ca(OH)_2 \rightarrow CaSO_3 + H_2O$
- 5) $SO_2 + 2H_2S \rightarrow 3S + 2H_2O$
- 6) $2Bi_2O_3 + 2Na_2O_2 + O_2 \rightarrow 4NaBiO_3$
- 7) $5\text{NaBiO}_3 + 2\text{Mn}(\text{NO}_3)_2 + 16\text{HNO}_3 \rightarrow 2\text{HMnO}_4 + 5\text{NaNO}_3 + 5\text{Bi}(\text{NO}_3)_3$

 $+7H_2O$

ИЛИ

 $5NaBiO_3 + 2Mn(NO_3)_2 + 14HNO_3 \rightarrow 2NaMnO_4 + 3NaNO_3 + 5Bi(NO_3)_3$

 $+7H_2O$

3) **NaBiO**₃ – висмутат натрия

Критерии оценивания:

1) Расчёт и определение солей **A** и **D** по 2 балла

4 балла (без расчёта — 0 баллов)

Формулы веществ **B**, **C**, **Y**, **Z** по 1 баллу

4 балла

Уравнения реакций 1-6 по 1,5 балла

9 баллов

,5 ownia

(если неправильно расставлены коэффициенты – 0,75

балла)

Уравнение реакции 7

2 балла

(если неправильно расставлены коэффициенты – 1 балл)

3) Название соли

1 балл **Итого 20 баллов**