LXXV МОСКОВСКАЯ ОЛИМПИАДА ШКОЛЬНИКОВ ПО ХИМИИ ЗАКЛЮЧИТЕЛЬНЫЙ ЭТАП ТЕОРЕТИЧЕСКИЙ ТУР 24.02.2019 г.

11 класс

В зачёт идут только <u>пять</u> задач из шести. Задача с минимальным числом баллов при подсчёте суммы баллов не учитывается.

Задача №1

Какие объемы 30% олеума (плотность 1.931 г/мл) и 96% серной кислоты (плотность 1.835 г/мл) потребуются для приготовления 200 мл 10% олеума (плотность 1.862 г/мл). Почему для разбавления нельзя использовать дистиллированную воду? Где применяется олеум в органическом синтезе? В какой форме серный ангидрид присутствует в олеуме? Изобразите структурную формулу одного из возможных соединений.

Решение:

Обозначим массу олеума как m_O , а массу раствора кислоты как m_K . Масса конечного раствора 200мл*1.862 г/мл = 372.4 г Масса серного ангидрида в конечном растворе $m_{SO3} = 372.4$ г*0.1 = 37.24 г При смешении растворов протекает реакция: $SO_3 + H_2O = H_2SO_4$

Составим систему уравнений:
$$\begin{cases} m_O + m_K = 372.4 \\ M(SO_3) \cdot \left(\frac{0.3m_O}{M(SO_3)} - \frac{0.04m_K}{M(H_2O)}\right) = 37.24 \end{cases}$$

Решая данную систему, находим:

 $m_O = 216.5 \ \Gamma \implies V_O = 216.5 : 1.931 = 112.1 \ мл$ (более точные расчеты дают 113.05 мл) $m_K = 155.9 \implies V_K = 155.9 : 1.835 = 84.96 \ мл$

При смешивании воды с олеумом выделяется слишком много тепла и образуется сернокислотный туман.

Олеум применяется в реакциях сульфирования и нитрования.

Серный ангидрид в олеуме присутствует в виде высших серных кислот (дисерной, трисерной и т.д.)

Структурная формула дисерной (пиросерной) кислоты:

Критерии оценивания:

Уравнение реакции – **2 балла**

Расчет объема серной кислоты – 5 баллов

Расчет объема олеума – **5 баллов**

Объяснение невозможности использования дистиллированной воды — **2 балла** Любая верная область применения олеума в органическом синтезе — **3 балла** Структурная формула дисерной (или любой другой высшей серной кислоты) — **3 балла Итого 20 баллов**

Задача №2

Вещества **А-I** вступают в следующие превращения (коэффициенты и условия не указаны):

 $A \rightarrow B + C$ $A + D \rightarrow C + E$

 $\mathbf{F} + \mathbf{G} \rightarrow \mathbf{A} + H_2O$

 $C + H \rightarrow I$

 $B + I \rightarrow H + F$

 $G + H \rightarrow C + H_2O$

 $\mathbf{K} + \mathbf{D} \rightarrow \mathbf{A} + H_2O$

 $K + H \rightarrow I$

Определите вещества A - K и приведите их названия, если известно, что вещества B, C и H – простые, а соединения D и G применяются в пищевой промышленности.

Решение:

Так как $\bf A$ распадается на два простых вещества, можно сделать вывод что оно бинарное. Образование воды в некоторых реакциях свидетельствует о том, что среди простых веществ, скорее всего, есть водород. $\bf I$ – продукт взаимодействия двух простых веществ, причем простое вещество $\bf B$ вытесняет $\bf H$ из $\bf I$. Вещества $\bf K$ и $\bf I$ имеют одинаковый качественный состав, так как $\bf I$ может быть получено из $\bf K$ под действием $\bf H$. $\bf G$, по всей видимости, является оксидом элемента $\bf C$, следовательно, $\bf H$ – водород. Поскольку $\bf B$ вытесняет водород из $\bf I$, вероятнее всего $\bf B$ – металл. Распадаться на металл и неметалл могут оксиды, ацетилениды, галогениды и азиды. Варианты с оксидом и галогенидом не подходят, так как согласно реакции $\bf G$ + $\bf H$ $\bf D$ + $\bf C$ + $\bf H_2 \bf O$, при реакции $\bf G$ с водородом образуется свободный неметалл и вода. Таким образом, $\bf C$ – это углерод или азот. Поскольку оксиды углерода не восстанавливаются водородом до угля, единственный оставшийся вариант – $\bf C$ – азот. Следовательно $\bf I$ – аммиак, а $\bf K$ – гидразин. Азиды получаются при реакции гидразина с нитритами. Нитрит, использующийся в пищевой промышленности – нитрит натрия ($\bf D$).

 $\mathbf{A}-NaN_3-$ азид натрия

 \mathbf{B} – Nа - натрий

 $\mathbf{C} - \mathbf{N}_2$ – азот

D – NaNO₂ – нитрит натрия – консервант для мясных продуктов

 $E - Na_2O -$ оксид натрия

 $\mathbf{F} - \mathbf{NaNH}_2 - \mathbf{a}$ мид натрия

 ${f G} - N_2 O$ – оксид азота (I) – пропеллент для взбитых сливок

 $\mathbf{H} - \mathbf{H}_2 - \mathbf{водород}$

 $I - NH_3 -$ аммиак

 $K - N_2H_4 -$ гидразин

Критерии оценивания:

Формулы веществ **А-К** – **по 1.5 балла (всего 15 баллов)**

Названия веществ A-K – **no 0.5 балла (всего 5 баллов)**

Итого 20 баллов

Задача №3

При термическом разложении 10 г некоторого безводного нитрата ${\bf Q}$ было получено 5.278 г крайне термостойкого желтоватого порошка ${\bf R}$. Вещество ${\bf R}$ растворяется в концентрированной соляной кислоте с выделением газа. Определите вещества ${\bf Q}$ и ${\bf R}$ и напишите уравнения упомянутых реакций, если известно, что вещества ${\bf Q}$ и ${\bf R}$ нерадиоактивны. Ответ подтвердите расчетом.

Решение:

При разложении нитрата могут образовываться нитрит, оксид металла или свободный металл. Поскольку образуется желтоватый порошок, вариант с образованием металла не подходит, значит \mathbf{R} — либо нитрит, либо оксид. Рассмотрим различные варианты и учтем, что при разложении нитрата возможно изменение степени окисления металла.

Сначала рассмотрим вариант с образованием нитрита:

$$Me(NO_3)_x \rightarrow Me(NO_2)_y + O_2$$

Молярную массу металла можно в данном случае найти из уравнения:

$$\frac{10}{M+62x} = \frac{5.278}{M+46y}$$

Откуда M = 69.3x - 97.416y

Х и Y не могут принимать значения больше 4, поэтому рассмотрим все возможные варианты:

X Y	1	2	3	4	
1	-28,116	-125,532	-222,948	-320,364	
2	41,184	-56,232	-153,648	-251,064	
3	110,484	13,068	-84,348	-181,764	
4	179,784	82,368	-15,048	-112,464	

Итого получилось 5 неотрицательных вариантов, однако, ни один из них не соответствует с приемлемой точностью молярной массе какого либо металла.

Рассмотрим теперь вариант с образованием оксида:

$$Me(NO_3)_x \rightarrow MeO_{y/2} + NO_2 + O_2$$

Молярную массу металла можно в данном случае найти из уравнения:

$$\frac{10}{M+62x} = \frac{5.278}{M+8y}$$

Откуда M = 69.3x - 16.942y

Х лежит в диапазоне от 1 до 4, а Y от 1 до 8, поэтому рассмотрим все возможные варианты:

X Y	1	2	3	4	5	6	7	8
1	52,358	35,416	18,474	1,532	-15,41	-32,352	-49,294	-66,236
2	121,658	104,716	87,774	70,832	53,89	36,948	20,006	3,064
3	190,958	174,016	157,074	140,132	123,19	106,248	89,306	72,364
4	260,258	243,316	226,374	209,432	192,49	175,548	158,606	141,664

С приемлемой точностью подходят следующие нерадиоактивные элементы: Sb (X = 2, Y = 1), Sr (X = 2, Y = 3), Gd (X = 3, Y = 3), Ce (X = 3, Y = 4), Pd (X = 3, Y = 6), Y (X = 3, Y = 7), Ge (X = 3, Y = 8), Ir (X = 4, Y = 5), Tb (X = 4, Y = 7).

Из найденных элементов, только гадолиний и церий проявляют необходимые степени окисления.

Поскольку при растворении оксида в соляной кислоте происходит выделение газа, этот газ – хлор. Из указанных оксидов сильными окислительными свойствами обладает только церий (IV).

Уравнения реакций:

 $2Ce(NO_3)_3 = 2CeO_2 + 6NO_2 + O_2$

 $2CeO_2 + 8HCl = 2CeCl_3 + Cl_2 + 4H_2O$

Критерии оценивания:

Догадка о возможности изменения степени окисления металла в ходе реакции – 3 балла

Определение церия или гадолиния по расчетам – 5 баллов

Формулы веществ Q и R – no 3 балла (всего 6 баллов)

Уравнения реакций – **по 3 балла (всего 6 баллов)**

Ответ без расчетов и обоснований — 0 баллов

Комментарий: если участник по расчетам определил вещества Q и R, то первые 3 балла начисляются автоматически, даже без явного указания на изменение степени окисления.

Итого 20 баллов.

Задача №4

Органическое соединение W может быть получено тремя разными способами:

Изобразите структурные формулы веществ V-Z, если известно, что вещество W является единственным органическим продуктом реакций $\underline{1}$, $\underline{2}$ и $\underline{3}$, вещество X не является ароматическим, а молярная масса Y на 20% больше молярной массы вещества Z. Дополнительно известно, что кроме вещества W в реакциях $\underline{1}$, $\underline{2}$ и $\underline{3}$ образуются только вещества, входящие в состав воздуха.

Решение:

Нафталин окисляется кислородов на V_2O_5 до фталевого ангидрида (V). С избытком метанола в кислой среде образуется диметилфталат (W). Поскольку соединение X не ароматическое, скорее всего в ходе реакции происходит сборка бензольного кольца за Наиболее вероятный реакции циклоприсоединения. способ построения ароматической системы \mathbf{W} реакции циклоприсоединения диметилацетилендикарбоксилату Х. Восстановление ароматичности возможно за счет ретро-реакции Дильса-Альдера с элиминированием стабильных малых молекул. Основные компоненты воздуха: азот, кислород, аргон, углекислый газ, водяной пар. Углекислый газ образуется при использовании альфа-пиронов, а азот при использовании пиридазинов. Побочный продукт в реакции 3 – вода.

Критерии оценивания:

Структурные формулы веществ **V – Z – по 4 балла (всего 20 баллов) Итого 20 баллов**

Задача №5

Газовая хроматография (ГХ) является важнейшим методом анализа летучих органических соединений. Пары анализируемой смеси проходят через тонкую капиллярную колонку с нанесенным на нее сорбентом. В зависимости от эффективности адсорбции компоненты разделяются и выходят из колонки в разное время. Основной характеристикой вещества в газовой хроматографии является время удерживания t_R , которое соответствует времени (в секундах) между вводом вещества в хроматограф и выходом из колонки. В зависимости от температуры, сорбента и скорости потока газа время удерживания может существенно меняться, поэтому для того, чтобы описывать удерживание вещества применяют индексы Ковача, в которых подвижность вещества сравнивается с подвижностью n-алканов со схожей летучестью:

 $I_x = \frac{\lg t_R^x - \lg t_R^n}{\lg t_R^{n+1} - \lg t_R^n} \cdot 100 + 100 \cdot n$, где I_x — индекс Ковача, t_R^x — время удерживания исследуемого вещества, t_R^n — время удерживания μ -алкана с n атомов углерода в цепи, t_R^{n+1} — время удерживания μ -алкана с (n+1) атомов углерода в цепи.

- 1) Рассчитайте индекс Ковача для н-бутана.
- 2) На газовой хроматограмме обнаружены пики с временами удерживания 61.7, 70.4, 78.1, 89.0 и 104.9 с. Пользуясь таблицей, проведите качественную идентификацию компонентов смеси. Времена удерживания *н*-пентана, *н*-гексана и *н*-гептана равны соответственно 55.4, 75.8 и 107.0 с.

Вещество	I_x	Вещество	I_x	
2-метилпентан	591,0	2-метилгексан	661,8	
3-метилгексан	646,7	циклопентен	557,6	
циклогексан	617,3	фенол	695,0	
циклопентан	534,4	тиофен	655,1	
фуран	588,1	2,3-диметилбутан	576,3	
бензол	608,2	пиридин	672,6	
2,3-диметилпентан	624,2	2,4-диметилпентан	630,7	

3) Как уже говорилось выше, ГХ применяется для анализа летучих органических соединений. Углеводы, например глюкоза, являются нелетучими веществами и при

сильном нагревании разлагаются. Тем не менее, ГХ активно применяется для качественного и количественного анализа углеводов. Предложите способ, с помощью которого методом ГХ можно проанализировать смесь D-глюкозы и D-фруктозы.

Внимание! Если ваш калькулятор не позволяет вычислять логарифмы, воспользуйтесь таблицей в приложении.

Решение:

- 1) 400
- 2) Найдем индексы Ковача для исследуемых веществ. При этом используем времена удерживания ближайших по летучести н-алканов.

61,7 с – индекс 534,4 – циклопентан

70,4 с – индекс 576,4 – 2,3-диметилбутан

78.1 с – индекс 608.7 – бензол

89,0 с – индекс 646,6 – 3-метилгексан

104,9 с – индекс 694,3 – фенол

3) Проблема низкой летучести углеводов связана с прочными межмолекулярными водородными связями между гидроксильными группами молекул углеводов. Для того чтобы углеводы можно было проанализировать методом ГХ их нужно количественно перевести в более летучую форму. Для этого можно использовать исчерпывающее силилирование, ацилирование или алкилирование:

$$HOH$$
 HOH HOH

TMS = $Si(CH_3)_3$

После перевода соединений в неполярную летучую форму их можно анализировать обычным методом. Процедура перевода вещества в более удобную для анализа химическую форму называется дериватизация.

Критерии оценивания:

Определение индекса Ковача для бутана – 4 балла

Отнесение пиков на хроматограмме — **по 2 балла за каждое вещество (всего 10 баллов)** Предложен перевод в летучую форму с помощью исчерпывающего силилирования, ацилирования или алкилирования (любой вариант) — **6 баллов** (без конкретного примера трансформации **3 балла**)

Итого 20 баллов

Задача №6

Ниже представлена схема превращений соединений некоторого элемента L (продукты, не содержащие элемент L на схеме не указаны):

Газообразное соединение **D** обычно получают электролизом соединений **A** или **B** в безводной фтороводородной кислоте. Взаимодействие **A** с хлороводородом приводит к образованию смеси соединений **B** и **C**. Соединение **B** является единственным содержащим **L** продуктом взаимодействия **C** с хлоридом фосфора (V). Массовая доля фтора в **D** 65,52%. Соединение **E** (массовая доля кислорода 38,09%) является очень реакционноспособным и при температуре выше -80 °C легко димеризуется с образованием **E**'. Определите элемент **L** и неизвестные вещества **A** – **G**, а также напишите уравнения реакций электролиза. Соединения **C**, **F** и **G** являются кислотами. Сравните их силу и объясните, с чем связано различие в кислотных свойствах.

Решение:

Исходя из массовой доли кислорода в E, находим что его молекулярная масса составляет 42 г/моль на каждый атом кислорода в молекуле, т.е. кроме кислорода остается фрагмент молярной массой 26 г/моль, что соответствует C_2H_2 . Таким образом, соединение E – кетен, неустойчивый газ, который легко димеризуется.

Для соединения $\bf D$ молярная масса составит 29 г/моль на каждый атом фтора (за вычетом фтора остается 10 г/моль). Если в $\bf D$ 4 атома фтора, то молярная масса остатка будет 40 г/моль, что соответствует фрагменту $\bf C_2\bf O$. Таким образом, $\bf D$ – это трифторацетилфторид Элемент $\bf L$ – углерод или кислород.

Формулы веществ:

Уравнения реакций электролиза:

$$(CH_3CO)_2O + 8 \text{ HF} \rightarrow 2 \text{ CF}_3COF + 6 \text{ H}_2 + \text{H}_2O$$

 $CH_3COCl + 4 \text{ HF} \rightarrow CF_3COF + 3 \text{ H}_2 + \text{HCl}$

Сила кислот убывает в ряду трифторуксусная — хлоруксусная — уксусная ($\mathbf{G} > \mathbf{F} > \mathbf{C}$). Сила кислоты определяется стабильностью ее аниона. Анион, являясь электроноизбыточной частицей, стабилизируется акцепторными группами. Таким образом, чем сильнее отрицательный индуктивный эффект заместителей, тем сильнее соответствующая кислота.

Критерии оценивания:

Oпределение элемента L-1 балл

 Φ ормулы веществ A-G- **по 2 балла (всего 16 баллов)**

Уравнения реакций – **по 1 баллу (всего 2 балла)**

Верное определение соотношения силы кислот с объяснением — 1 балл (без объяснения — 0 баллов)

Итого 20 баллов

Приложение. Таблица десятичных логарифмов чисел от 1 до 209.

Десятки	Единицы									
	0	1	2	3	4	5	6	7	8	9
0		0,0000	0,3010	0,4771	0,6021	0,6990	0,7782	0,8451	0,9031	0,9542
10	1,0000	1,0414	1,0792	1,1139	1,1461	1,1761	1,2041	1,2304	1,2553	1,2788
20	1,3010	1,3222	1,3424	1,3617	1,3802	1,3979	1,4150	1,4314	1,4472	1,4624
30	1,4771	1,4914	1,5051	1,5185	1,5315	1,5441	1,5563	1,5682	1,5798	1,5911
40	1,6021	1,6128	1,6232	1,6335	1,6435	1,6532	1,6628	1,6721	1,6812	1,6902
50	1,6990	1,7076	1,7160	1,7243	1,7324	1,7404	1,7482	1,7559	1,7634	1,7709
60	1,7782	1,7853	1,7924	1,7993	1,8062	1,8129	1,8195	1,8261	1,8325	1,8388
70	1,8451	1,8513	1,8573	1,8633	1,8692	1,8751	1,8808	1,8865	1,8921	1,8976
80	1,9031	1,9085	1,9138	1,9191	1,9243	1,9294	1,9345	1,9395	1,9445	1,9494
90	1,9542	1,9590	1,9638	1,9685	1,9731	1,9777	1,9823	1,9868	1,9912	1,9956
100	2,0000	2,0043	2,0086	2,0128	2,0170	2,0212	2,0253	2,0294	2,0334	2,0374
110	2,0414	2,0453	2,0492	2,0531	2,0569	2,0607	2,0645	2,0682	2,0719	2,0755
120	2,0792	2,0828	2,0864	2,0899	2,0934	2,0969	2,1004	2,1038	2,1072	2,1106
130	2,1139	2,1173	2,1206	2,1239	2,1271	2,1303	2,1335	2,1367	2,1399	2,1430
140	2,1461	2,1492	2,1523	2,1553	2,1584	2,1614	2,1644	2,1673	2,1703	2,1732
150	2,1761	2,1790	2,1818	2,1847	2,1875	2,1903	2,1931	2,1959	2,1987	2,2014
160	2,2041	2,2068	2,2095	2,2122	2,2148	2,2175	2,2201	2,2227	2,2253	2,2279
170	2,2304	2,2330	2,2355	2,2380	2,2405	2,2430	2,2455	2,2480	2,2504	2,2529
180	2,2553	2,2577	2,2601	2,2625	2,2648	2,2672	2,2695	2,2718	2,2742	2,2765
190	2,2788	2,2810	2,2833	2,2856	2,2878	2,2900	2,2923	2,2945	2,2967	2,2989
200	2,3010	2,3032	2,3054	2,3075	2,3096	2,3118	2,3139	2,3160	2,3181	2,3201
	0	1	2	3	4	5	6	7	8	9