LXXII Московская олимпиада школьников по химии 2015-2016 уч. год

Практический тур

Практический тур проводится очно (продолжительность 4 часа), включает решение экспериментальной задачи в химической лаборатории — 10 баллов, а также предварительную самостоятельную поисковую работу участника олимпиады в форме написания реферата по заданной теме. Реферат участники приносят с собой на очный практический тур, по реферату проводится краткое собеседование, максимальная оценка реферата — 5 баллов. Всего за практический тур участник может максимально получить 15 баллов.

Цель практического тура: развитие творческих способностей школьников по химии при выполнении химического эксперимента.

Критерии оценки рефератов

Хорошо оформлен, по теме, нет фактических ошибок, учащийся понимает что написано - 5 баллов.

Снимается 1 балл

- плохое оформление
- или нет списка использованной литературы
- «плавает» при вопросах из текста реферата

Снимается 2 балла

- списано, но разобрался в тексте

Снимается 5 баллов - явно списано, нет ни малейшего представления, что в тексте.

Экспериментальная часть

10 класс

Кафедра аналитической химии

3adaние. В 6 пронумерованных пробирках выданы растворы следующих веществ: Na_2CO_3 , $Ca(NO_3)_2$, KI, KBr, $Al_2(SO_4)_3$, FeCl₃. Кроме этого, имеются растворы следующих реактивов: AgNO₃, HCl, NaOH, раствор лакмуса, универсальная индикаторная бумага.

Реактивы: растворы AgNO₃, HCl, NaOH, раствор лакмуса, спиртовой раствор фенолфталеина, универсальная индикаторная бумага.

Оборудование: штатив с пробирками, пипетки, водяная баня, предметные стекла, стакан с дистиллированной водой для промывания пипеток.

Вопросы

1. С помощью имеющихся реактивов идентифицируйте вещества в пробирках. РЕШЕНИЕ. Составляем таблицу мысленного эксперимента с возможными реакциями и наблюлениями.

Исследуемое	Реактив	Наблюдения	Уравнение реакции
В-ВО			
Na ₂ CO ₃	HCl	Выделение газа без запаха	$2H^{+} + CO_3^{2-} \rightarrow H_2O + CO_2 \uparrow$
Ca(NO ₃) ₂	AgNO ₃	Без изменений	
KI	AgNO ₃	Желтый творожистый	$Ag^{+} + I^{-} \rightarrow AgI \downarrow$
		осадок	
KBr	AgNO ₃	Желтоватый творожистый	$Ag^{+} + Br^{-} \rightarrow AgBr \downarrow$
		осадок	
$Al_2(SO_4)_3$	AgNO ₃	помутнение	$2Ag^{+}+SO_{4}^{2-} \rightarrow Ag_{2}SO_{4} \downarrow$
	NaOH	Белый аморфный осадок,	$Al^{3+}+3OH^{-}\rightarrow Al(OH)_{3}\downarrow$
		растворимый в избытке	$Al(OH)_3 +OH^- \rightarrow [Al(OH)_4]^-$
		щелочи	(p-p)
FeCl ₃	AgNO ₃	Белый творожистый	$Ag^++Cl^- \rightarrow AgCl\downarrow$
		осадок	
	NaOH	Бурый аморфный осадок	$Fe^{3+}+3OH \rightarrow Fe(OH)_3 \downarrow$

2. Опишите ход определения, занося результаты опытов в таблицу:

$N_{\underline{0}}$	Добавляемое	Уравнение реакций в молекулярной и	Идентифициро
проб	вещество и	ионной форме	ванное
ирки	наблюдения		вещество
1	NaOH бурый	$FeCl_3+ 3NaOH \rightarrow Fe(OH)_3 \downarrow + 3NaCl$	FeCl ₃ , раствор
	аморфный осадок Fe^{3+} +3OH \rightarrow Fe(OH) ₃ ↓		бурого цвета
2	HC1	$2H^{+} + 2C1^{-} + 2Na^{+} + CO_{3}^{2-} \rightarrow 2Na^{+} + 2C1^{-} +$	Na ₂ CO ₃
		$H_2O + CO_2\uparrow$	
		$2H^{+} + CO_{3}^{2-} \rightarrow H_{2}O + CO_{2}\uparrow$	
3	AgNO ₃	$KBr + AgNO_3 \rightarrow KNO_3 + AgBr \downarrow$	KBr
	желтоватый	$Ag^++Br^- \rightarrow AgBr \downarrow$	
	творожистый		

	осадок		
4	AgNO ₃ без		Ca(NO ₃) ₂
	изменений		
5	NaOH белый	$Al_2(SO_4)_3 + 6NaOH \rightarrow 2Al(OH)_3\downarrow + 3Na_2SO_4$	$Al_2(SO_4)_3$
	аморфный осадок,	$Al^{3+}+3OH^{-}\rightarrow Al(OH)_{3}\downarrow$	
	растворимый в	$Al(OH)_3 + OH^- \rightarrow [Al(OH)_4]^-(p-p)$	
	избытке щелочи		
6	AgNO ₃ желтый	$AgNO_3+KI \rightarrow KNO_3+AgI$	KI
	творожистый	$Ag^+ + I^- \rightarrow AgI \downarrow$	
	осадок		

Вывод: №1 - FeCl₃, №2 - Na₂CO₃, №3 - KBr, №4 - Ca(NO₃)₂, №5 - Al₂(SO₄)₃, №6 - KI.

3. Напишите возможные реакции между определенными Вами веществами. Проведите предложенные реакции. Зафиксируйте наблюдения и запишите уравнения реакций в молекулярной и ионной формах. Для окислительно-восстановительных реакций составьте электронный баланс.

```
- 2FeCl<sub>3</sub> +3Na<sub>2</sub>CO<sub>3</sub>+ 3H<sub>2</sub>O →2Fe(OH)<sub>3</sub>↓+ 6NaCl + 3CO<sub>2</sub>↑ выделение газа и бурого осадка 2Fe<sup>3+</sup>+ 3CO<sub>3</sub><sup>2-</sup> +3H<sub>2</sub>O→2Fe(OH)<sub>3</sub>↓+ 3CO<sub>2</sub>↑
```

-
$$Al_2(SO_4)_3 + 3Na_2CO_3 + 3H_2O \rightarrow 2Al(OH)_3 \downarrow + 3Na_2SO_4 + 3CO_2 \uparrow$$

$$2Al^{3+} + 3CO_3^{2-} + 3H_2O \rightarrow 2$$
 $Al(OH)_3 \downarrow + 3CO_2 \uparrow$ выделение газа без запаха и белого осадка $-2FeCl_3 + 6KI \rightarrow 2FeI_2 + I_2 + 6KCl$

$$Fe^{+3}+\bar{e} \rightarrow Fe^{+2}2$$

$$2I^{-}-2\bar{e}\rightarrow I_{2}$$
 1

4. Как окрашен лакмус и универсальная индикаторная бумага в растворах изучаемых солей? Напишите уравнения реакций гидролиза солей в молекулярном и ионном виде.

Растворы KBr, KI, $Ca(NO_3)_2$. pH=7, т.к. соль, образованная сильным основанием и сильной кислотой, не подвергается гидролизу. Лакмус фиолетовый.

Раствор Na₂CO₃. pH=12, т.к. соль образована сильным основанием и слабой кислотой. Протекает гидролиз по аниону, среда щелочная. Лакмус синий.

$$CO_3^{2-} + H^+OH^- \leftrightarrow HCO_3^- + OH^-$$

$$Na_2CO_3 + H_2O \leftrightarrow NaHCO_3 + NaOH$$

Растворы $FeCl_3$, $Al_2(SO_4)_3$. pH=2-3, т.к. эти соли образованы слабым основанием и сильной кислотой, гидролизуются по катиону, среда кислая. Лакмус красный.

Критерии оценивания

10 баллов - следовал методике, определил ионы при помощи качественных реакций, объяснил проведение опытов, правильно записал все уравнения реакций.

Снимается 1 балл

- не смог охарактеризовать наблюдения
- мешал другим выполнять соответствующие опыты
- выполнял методику, но опыты проделал неверно

Снимается 2 балла - не соблюдал методику

Кафедра органической химии

Задание. Синтезировать бензальанилин по предложенной методике.

В фарфоровый стакан помещают бензальдегид (5,3 г), анилин (4,7 г) и энергично перемешивают стеклянной палочкой до тех пор, пока смесь не загустеет (консистенция творога). К полученной смеси добавляют изопропиловый спирт (10 мл) и перемешивают стеклянной палочкой до образования однородной массы. Осадок отфильтровывают на воронке Бюхнера, тщательно отжимая осадок. Для более полного переноса реакционной массы из стакана на фильтр, используют полученный фильтрат и при необходимости небольшое количество изопропилового спирта (\sim 5 мл). Осадок растворяют в горячем изопропаноле (10 мл), отфильтровывают через складчатый фильтр и фильтрат разбавляют холодной водой (30 мл). Выпавший осадок отфильтровывают и высушивают на воздухе. Получают 6 г (66%) бензальанилина в виде кристаллического порошка с желтовато-розовым оттенком. $T_{пл.} = 50-52$ °C. По литературным данным для бензальанилина $T_{пл.} = 51-2$ °C.

За отведённые 4 часа нужно было синтезировать соединение, заполнить лабораторный журнал по представленной схеме, в котором необходимо указать основную реакцию, написать побочные реакции, заполнить таблицу "ход работы", в которой указываются все проведённые действия и наблюдаемые эффекты. По окончании работы нужно было определить выход полученного вещества и определить его температуру плавления.

Основная реакция:

Критерии оценивания

10 баллов - следовал методике, получил продукт, охарактеризовал полученное вещество, заполнил лабораторный журнал, определил выход продукта, который составил не менее 90% от возможного.

Снимается 1 балл

- не смог охарактеризовать продукт
- не написал основную реакцию
- мешал другим выполнять соответствующие опыты

- выполнял методику, но продукта не получил из-за ошибки на последней стадии

Снимается 2 балла - не соблюдал методику.